CMR: a5b-b5a chia hết cho 30 với mọi a,b thuộc Z.
CMR:
a, 29-1 không chia hết cho 3
b, 56-104 không chia hết cho 9
c, (n+6)2-(n-6)2 chia hết cho 24(n thuộc Z)
d, (3n+4)2-16 chia hết cho 3( với mọi n thuộc Z)
a, 29 - 1 = 511 không chia hết cho 3.
b, \(5^6-10^4=5^6-5^4.2^4\)
\(=5^4\left(5^2-2^4\right)=5^4.9⋮9\)
c, \(\left(n+6\right)^2-\left(n-6\right)^2=\left(n+6+n-6\right)\left(n+6-n+6\right)=2n.12=24n⋮24\)
d,\(\left(3n+4\right)^2-16=9n^2+24n+16-16=9n^2+24n⋮3\)
Chúc bạn học tốt
chứng minh a^3 -a chia hết cho 6 với mọi a thuộc Z
Ta có : a3 - a = a( a2 - 1 ) = a( a - 1 )( a + 1 ) = ( a - 1 )a( a + 1 )
Ta thấy : a - 1 và a là hai số nguyên liên tiếp.
=> ( a + 1 )a chia hết cho 2 (1)
Lại thấy: ( a - 1) ; a và ( a + 1 ) là ba số nguyên liên tiếp.
=> ( a - 1)a( a + 1 ) chia hết cho 3 (2)
Từ (1) và (2) suy ra ( a - 1)a( a + 1 ) chia hết cho 2 và 3
Mà ( 2;3 ) = 1
Có : 2 . 3 = 6
=> ( a - 1)a( a + 1 ) chia hết cho 6
=> a3 - a chia hết cho 6 với mọi a thuộc Z (đpcm)
Hok tốt !
CM bằng phương pháp quy nạp :
a) 10n + 72n - 1 chia hết cho 81 với mọi n thuộc N
b) 10n + 18n - 1 chia hết cho 27 với mọi n thuộc N
c) 4.3n2n+2 + 32n - 36 chia hết cho 64 với mọi n
a ) 10n + 72n - 1 chia hết cho 81
+ ) n = 0 => 100 + 72 . 0 - 1 = 0
+ ) Giả sử đúng đến n = k tức là :
( 10k + 72k - 1 ) chia hết cho 81 ta phải chứng minh đúng đến n = k+ 1
Tức là : 10k + 1 + 72 x k + 71
=> 10 . 10k + 72k + 71
=> 10 . \(\frac{10k+72k-1}{chiahetcho81}\)- \(\frac{648k+27}{chiahetcho81}\)
=> đpcm
Câu b và c làm tương tự
CM bằng phương pháp quy nạp :
a) 10n + 72n - 1 chia hết cho 81 với mọi n thuộc N
b) 10n + 18n - 1 chia hết cho 27 với mọi n thuộc N
c) 4.3n2n+2 + 32n - 36 chia hết cho 64 với mọi n
Đặt B= 10n+72n-1
B = 10ⁿ + 72n - 1
= 10ⁿ - 1 + 72n
Ta có: 10ⁿ - 1 = 99...9 (có n-1 chữ số 9)
= 9x(11..1) (có n chữ số 1)
A = 10ⁿ - 1 + 72n = 9x(11...1) + 72n
=> A : 9 = 11..1 + 8n
thấy 11...1 có n chữ số 1 có tổng các chữ số là n => 11..1 - n chia hết cho 9
=> A : 9 = 11..1 - n + 9n chia hết cho 9
= 11...1 -n + 9n
=> A : 9 = chia hết cho 9
=> A chia hết cho 81
CM bằng phương pháp quy nạp :
a) 10n + 72n - 1 chia hết cho 81 với mọi n thuộc N
b) 10n + 18n - 1 chia hết cho 27 với mọi n thuộc N
c) 4.3n2n+2 + 32n - 36 chia hết cho 64 với mọi n
a) Đặt cái cần chứng minh là (*)
+) Với n = 0 thì (*) chia hết cho 81 => (*) đúng
+) Giả sử (*) luôn đúng với mọi n = k (k \(\ge\) 0) => 10k + 72k - 1 chia hết cho 81 thì ta cần chứng minh (*) cũng luôn đúng với k + 1 tức 10k + 1 + 72(k + 1) - 1 chia hết cho 81
Thật vậy:
10k + 1 + 72(k + 1) - 1
= 10k.10 + 72k + 72 - 1
= 10k + 72k + 9.10k + 72 - 1
= (10k + 72k - 1) + 9.10k + 72
đến đây tui ... chịu :))
Tiếp nè: Ta có: 10k = 9n + 1 => 9.(9n + 1) + 72 = 81n + 9 + 72 = 81n + 81 chia hết cho 81 mà 10k + 72k - 1 chia hết cho 81 theo giả thiết quy nạp => (10k + 72k - 1) + 9.10k + 72 chia hết cho 81
=> Phương pháp quy nạp đươch chứng minh
Vậy 10n + 72n - 1 chia hết cho 81
CMR:Nếu 8x+13y chia hết cho 35 thì x+6y chia hết cho 35 (Với mọi x,y thuộc Z)
1. CMR: nếu a thuộc N không chia hết cho 5 thì a8 + 3a4 - 4 chia hết cho 100
2. Tìm a, b thuộc Z thỏa:
(a + 2) nhân (b - 3) = 7
3. CMR: n5 - n chia hết cho 30 với n thuộc Z
4. Tìm GTNN: A = 32/x2 +2x +4
5. Tìm các góc của tam giác ABC biết:
2Â = 3B = C
chứng minh rằng với mọi n thuộc Z : n2 - n chia hết cho 2
\(n^2\)- n = nn - n.1 = n . ( n - 1)
Mà n và n-1 là 2 số tự nhiên liên tiếp hay n và n-1 là một số lẻ hoặc một số chẵn
\(\Rightarrow\) n chia hết cho 2 hoặc (n-1) chia hêt cho 2
\(\Rightarrow\) n.(n-1) chia hết cho 2 hay \(n^2\)- n chia hết cho 2
CMR : 11^n+2+ 12^2n+1 chia hết cho 133, với mọi N thuộc N
11^n+2 + 12^2n+1
= 121*11^n + 144^n*12
= (133-12)11^n + 144^n*12
= 133*11^n + 12*(144-11)
= 133*11^n + 12*133
= 133(11^n + 12) chia hết cho 133.
\(11^{n+2}+12^{2n+1}=11.2.11^n+12.1.12^{2n}\)
\(=121.11^n+12.144^n\)
\(\left(133-12\right).11^n+12.144^n\)
\(133.11^n+\left(144^n-11^n\right).12=133.11^n+133^n.12\)
133.11^n chia hết cho 133
133^n.12 chia hết cho 133
=> 11^n+2 + 12 ^2n+1 chia hết cho 133
la 133 nhe chac chan 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000% luon neu khong minh se chet