Tìm c/s tận cùng của
a, 57^1999
b, 93^1999
c, 5^1+5^2+....+5^96
cho S =5 mũ 1+ 5 mũ 2+5 mũ 3+...+ 5 mu 96
a/tính S
b/ tìm chữ số tận cùng của S
a)5S=5(51+52+...+596)
5S=52+53+...+597
5S-S=(52+53+...+597)-(51+52+...+596)
4S=597-5
S=(597-5)/4
a)5S=5(51+52+...+596)
5S=52+53+...+597
5S-S=(52+53+...+597)-(51+52+...+596)
4S=597-5
S=(597-5)/4
a)5S=5(51+52+...+596)
5S=52+53+...+597
5S-S=(52+53+...+597)-(51+52+...+596)
4S=597-5
S=(597-5)/4
Cho S = 5\(^1\) + 5\(^2\) + 5\(^3\) + ... + 5\(^{96}\)
a. Tính S
b. Chứng minh rằng S chia hết cho 96
c. Tìm chữ số tận cùng của S?
Cho S= 5+52+53+...+596
Tìm chữ số tận cùng của S
vì 5 ; 5^2 ; 5^3 ; ...;5^96 đều có chữ số tận cùng là 5
Mà S có 96 số hạng
vậy chữ số tận cùng của S là:
5.96=480
vậy chữ số tận cùng của S là 0
ta có các số có tận cùng là 5 khi nâng lên lũy thừa đều có tân cùng là 5
=> các số hạng trong tổng S đều có tận cùng là 5
và số các số hạng của tổng S là :96
vậy chữ số tận cùng của S là:0
Cho S = 5+5 ^2 +5 ^3+..........+5 ^96
a Chứng minh S chia hết 126
b tìm chữ số tận cùng của S
a) Ta có: \(S=5+5^2+5^3+...+5^{96}\)
\(\Leftrightarrow S=\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+...+\left(5^{93}+5^{96}\right)\)
Vì mỗi cặp của đa thức \(S\)có hai hạng tử nên tổng số cặp là: \(\frac{96}{2}=48\)( cặp )
\(\Rightarrow\)Đa thức \(S\)không dư số nào
\(\Leftrightarrow S=\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+...+\left(5^{93}+5^{96}\right)\)
\(\Leftrightarrow S=5.\left(5^0+5^3\right)+5^2\left(5^0+5^3\right)+5^3.\left(5^0+5^3\right)+...+5^{93}.\left(5^0+5^3\right)\)
\(\Leftrightarrow S=5.126+5^2.126+5^3.126+...+5^{93}.126\)
\(\Leftrightarrow S=\left(5+5^2+5^3+...+5^{93}\right).126⋮126\)
Vậy \(S⋮126\)
Cho S = 51+52+53+....+596
a) Chứng minh rằng S chia hết cho126
b) Tìm chữ số tận cùng của S
(5+5^4)+(5^2+5^5)+(5x^3+5x^6)+.....+(5^93+5^96)
5(1+125)+5^2(1+125)+5^3(1+125)+.....+5^93(1+125)
126(5+5^2+5^3+.........+5^93)
b) 5
Cho S = 5 + 5 mũ 2 + 5 mũ 3 + ... + 5 mũ 96
a) Chứng minh : S chia hết cho 26
b) Tìm chữ số tận cùng của S
a,Tổng trên có 96 số hạng, nhóm 4 số thành 1 nhóm ta được 24 nhóm
S = 5 + 52 + 53 +.....+ 596
S = (5+52+53+54)+(55+56+57+58)+.....+(593+594+595+596)
S = 5(1+5+52+53)+55(1+5+52+53)+....+593(1+5+52+53)
S = 5.156 + 55.156 +.....+ 593.156
S = 156.(5+55+....+593) chia hết cho 26 (vì 156 chia hết cho 26)
Ta có: 5+55+.....+593 có 24 số hạng có tận cùng là 5
(vì 5 nhân lên lũy thừa bao nhiêu cũng cho 1 số có tận cùng là 5)
=> 5+55+...+593 có tận cùng là (...5) + (...5) +......+ (...5) gồm 24 số
=> 5+55+...+593 có tận cùng là 5.24 = ...0
=> S = 156.(5+55+...+593)
=> S = 156.(...0)
=> S = (...0)
=> Chữ số tận cùng của S là 0
Câu b sai. Làm như sau mới đúng. số tận cùng của S là 5.
b, Có:
S =5+52+53+…+596
5S =5(5+52+53+…+596)
=52+53+54…+597
5S-S =(52+53+54…+597)-( 5+52+53+…+596)
4S =597-5
S =(597-5)/4
Mà 597-5=596.5-5=54.24.5-5=(54)24.5-5=62524.5-5=…0625.5-5=…3125-5=3120
S =…..3120/4
20 chia 4 =5. Vậy tận cùng của S là 5
cho S= 5+52 + 53 +...+ 596
a/ thu gọn tổng S
b/ chứng minh S chia hết cho 126
c/ tìm chữ số tận cùng của S
b.(5+5^2+5^3+5^4+5^5+5^6)+......+(5^91+58^92+5^93+5^94+58^95+58^96)
=5(1+5+5^2+563+5^4+5^5)+..........+5^91(1+5+5^2+563+5^4+5^5)
=chia het cho 126 chia het cho 126
suy ra S chia het cho 126
c. Do S là tổng các lũy thừa có cơ số là 5.
Cho nên mỗi lũy thừa đều tận cùng là 5.
Mà S có tất cả 96 số như vậy. Nên chữ số tận cùng của S là 0.
Cho S=5+5 mũ 2+5 mũ 3+5 mũ 4+... 5 mũ 96
a.Chứng minh rằng S chia hết cho 126
b. Tìm chữ số tận cùng của S
minh chi lam duoc phan b thoi thong cam nhe
co cac so luy thua cua 5 deu co tan cung la 5
=> cu 2 so cong lai bang mot so duoi 0
=> S co chan luy thua => S co tan cung la 0
Bạn Trần Xuân Trung viết có dấu giùm được ko
\(S=5+5^2+5^3+...+5^{96}\)
\(\Rightarrow S=\left[\left(5+5^3\right)+\left(5^5+5^7\right)+...+\left(5^{95}+5^{97}\right)\right]+\left[\left(5^2+5^4\right)+...+\left(5^{96}+5^{98}\right)\right]\)
\(\Rightarrow S=\left[5.\left(1+5^2\right)+5^5.\left(1+5^2\right)+...+5^{95}.\left(1+5^2\right)\right]+\left[5^2.\left(1+5^2\right)+...+5^{96}.\left(1+5^2\right)\right]\)
\(\Rightarrow S=\left[5.126+5^5.126+...+5^{95}.126\right]+\left[5^2.126+...+5^{96}.126\right]\)
\(\Rightarrow S=126.\left(5+5^2+5^3+5^4+...+5^{96}\right)⋮126\)
b) Vì \(\left(5+5^2+5^3+...+5^{96}\right)\) có 96 số hạng tất cả, mỗi số có lũy thừa của 5 nên sẽ có tận cùng là 5, nên tổng 96 số hạng có tận cùng bằng 0 ( vì số 96 là số chẵn ) => S có tận cùng là 0
Cho S=51+52+53+.........596
a ) Hãy chứng minh rằng S \(⋮\)126
b ) Tìm chữ số tận cùng của S
a) Ta có:
S=51+52+53+...+596 gồm 96 số hạng
=(51+52+...+56)+(57+58+...+512)+...+(591+592+...+596)
=(51+52+...+56)+56.(51+52+...+56)+...+585.(51+52+...+56)
=19530+56.19530+...+585.19530
=19530.(1+55+...+585)
Vậy: S chia hết cho 126(Vì 19530 chia hết cho 126)
b) Vì S chia hết cho 19530 nên S có tận cùng bằng 0(19530=1953.10)