Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Kiến Quốc
Xem chi tiết
quách anh thư
19 tháng 1 2018 lúc 20:37

avata của bn đẹp zai quá

Đặng Kiến Quốc
19 tháng 1 2018 lúc 20:39

cau len mang gi hinh anh cua kỉito la duoc

Tiến Vũ
Xem chi tiết
Lê Nhật Phương
3 tháng 4 2018 lúc 20:24

\(ĐKXĐ:0\le x\ne x\)

a) \(P=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\frac{\left(1-x\right)^2}{2}\)

\(P=\left[\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right].\frac{\left(1-x\right)^2}{2}\)

\(P=\frac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\)

\(P=\frac{-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\)

\(P=-\sqrt{x}\left(\sqrt{x}-1\right)\)

b) \(P=-x+\sqrt{x}=-\left(x-2\sqrt{x}.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\sqrt{x}.\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

\(\Rightarrow MAX_P=\frac{1}{4}\text{ khi }x=\frac{1}{4}\)

THN
Xem chi tiết
Đinh Đức Hùng
1 tháng 11 2017 lúc 19:31

GTLN :

\(A=\frac{x+1}{x^2+x+1}=\frac{\left(x^2+x+1\right)-x^2}{x^2+x+1}=1-\frac{x^2}{x^2+x+1}\)

Vì \(\frac{x^2}{x^2+x+1}=\frac{x^2}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\ge0\forall x\) nên \(A=1-\frac{x^2}{x^2+x+1}\le1\forall x\) có GTLN là 1

GTNN : 

\(A=\frac{x+1}{x^2+x+1}=\frac{-\frac{1}{3}x^2-\frac{1}{3}x-\frac{1}{3}+\frac{1}{3}x^2+\frac{4}{3}x+\frac{4}{3}}{x^2+x+1}=\frac{-\frac{1}{3}\left(x^2+x+1\right)+\frac{1}{3}\left(x+2\right)^2}{x^2+x+1}\)

\(=-\frac{1}{3}+\frac{\frac{1}{3}\left(x+2\right)^2}{x^2+x+1}=-\frac{1}{3}+\frac{\left(x+2\right)^2}{3\left(x^2+x+1\right)}\ge-\frac{1}{3}\) có GTNN là \(-\frac{1}{3}\)

THN
Xem chi tiết
Nguyễn Anh Quân
5 tháng 11 2017 lúc 14:55

P + 1 = (x^2+1+4x+3)/x^2+1 = (x^2+4x+4)/x^2+1 = (x+2)^2/x^2+1 >= 0

=> P >= -1

Dấu "=" xảy ra <=> x+2 = 0 <=> x =-2

Vậy Min P = -1 <=> x = -2

Lại có : 4 - P = (4x^2+4-4x-3)/x^2+1 = (4x^2-4x+1)/x^2+1 = (2x-1)^2/x^2+1 >=0

=> P <= 4

Dấu "=" xảy ra <=> 2x-1 = 0 <=> x= 1/2

Vậy Max P = 4 <=> x=1/2

Nguyễn Xuân Toàn
5 tháng 11 2017 lúc 14:54

 Câu trả lời hay nhất:  Biểu diễn P: 

P = x^2 - 4x + 5 

= x^2 - 4x + 4 + 1 

= (x^2 - 4x + 4) + 1 

= (x - 2)^2 + 1 >= 1 

Vậy giá trị nhỏ nhất đạt được của P = 1 khi: 

(x - 2)^2 = 0 

<=> x - 2 = 0 

<=> x = 2

Trần Điền
Xem chi tiết
Nguyễn Anh Quân
8 tháng 3 2018 lúc 12:30

Hình như đề sai rùi bạn ơi !

Phải sửa xy/x^2+y^2 thành x^2+y^2/xy hoặc cái gì khác

Vì xy/x^2+y^2 chỉ có GTLN chứ ko có GTNN đâu

Mk nói có gì sai thì thông cảm nha !

Trần Điền
8 tháng 3 2018 lúc 12:34

đề không sai đâu bạn à. Đây là đề toán chuyên ở tỉnh mình mà

Nguyễn Ngọc Tuấn Anh
1 tháng 11 2019 lúc 20:33

Theo B.C.S ta có \(\sqrt{2\left(x^2+y^2\right)}\)\(\ge\)(\(\sqrt{\left(x+y\right)^2}\)\(=x+y\)

\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}\right)\sqrt{2\left(x^2+y^2\right)}\ge\left(\frac{1}{x}+\frac{1}{y}\right)\left(x+y\right)=2+\frac{x^2+y^2}{xy}\)

\(\Leftrightarrow\)\(P\ge2+\frac{xy}{x^2+y^2}+\frac{x^2+y^2}{4xy}+\frac{3\left(x^2+y^2\right)}{4xy}\)

\(\Leftrightarrow\)\(P\ge2+2\sqrt{\frac{xy}{x^2+y^2}\times\frac{x^2+y^2}{4xy}}\)\(+\frac{3\times2xy}{4xy}\)

\(\Leftrightarrow\)\(P\ge2+1+\frac{3}{2}=\frac{9}{2}\)

Dấu bằng xảy ra \(\Leftrightarrow\)x=y

Khách vãng lai đã xóa
Vo Thi Minh Dao
Xem chi tiết
TNA Atula
21 tháng 11 2018 lúc 21:43

Ta co :\(\dfrac{1}{f\left(x\right)}=\) \(x^4-x^2+1=x^4-2.\dfrac{1}{2}x^2+\dfrac{1}{4}+\dfrac{3}{4}\)

= \(\left(x^2-\dfrac{1}{4}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

=> f(x) ≤ \(\dfrac{4}{3}\)

Vay max f(x) =\(\dfrac{4}{3}\)

THN
Xem chi tiết
vũ tiền châu
4 tháng 9 2017 lúc 20:25

ĐK : \(x\ne-2\)

ta có \(A=\frac{x^2+2x+3}{\left(x+2\right)^2}=\frac{3x^2+6x+9}{3\left(x+2\right)^2}=\frac{2x^2+8x+8+x^2-2x+1}{3\left(x+2\right)^2}\)

             \(=\frac{2\left(x+2\right)^2+\left(x-1\right)^2}{3\left(x+2\right)^2}=\frac{2}{3}+\frac{\left(x-1\right)^2}{3\left(x+2\right)^2}\) 

vì (x-1)^2 >=0=> \(\frac{\left(x-1\right)^2}{3\left(x+2\right)^2}>=0\)

=> \(A>=\frac{2}{3}\)

dấu = xảy ra <=> x=1 ( thỏa mãn ĐKXĐ)

Nguyen Minh Quan
Xem chi tiết
Đỗ Lê Tú Linh
16 tháng 12 2015 lúc 22:17

GTNN là -2009 <=> x = 2; y = 3

C không có GTLN vì x và y càng lớn hoặc càng nhỏ thì -|x - 2| và -|y - 3| càng nhỏ

Nguyễn Nhật Minh
16 tháng 12 2015 lúc 22:20

 

Vì  - / x-2/ </0

và - / y -3/ </ 0

=> C = -/ x-2/ - / y -3/ - 2009 </ 0+0-2009 = - 2009

Max C = -2009 khi  x -2 =0 => x =2 và y -3 =0 => y =3

 

Đinh Tuấn Việt
16 tháng 12 2015 lúc 22:21

Ta có -|x - 2| < 0 ; -|y - 3| < 0

=> -|x - 2| - |y-3| < 0

=> C = -|x -2| - |y - 3| - 2009 < - 2009

GTLN của C là -2009 <=> |x - 2| = 0 ; |y - 3| = 0 <=> x = 2 và y = 3

Nguyễn Thái Sơn
Xem chi tiết