Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Bảo Hân
Xem chi tiết
Mai Phương Thảo
Xem chi tiết
Lương Cẩm Nhung
Xem chi tiết
Duy Nguyen
Xem chi tiết
Hoàng Anh Tú
Xem chi tiết
Phan Hà Thanh Như
Xem chi tiết
Nguyễn Linh Chi
17 tháng 6 2020 lúc 20:33

A B C K P Q L

a) AB là đường trung trực của kh nên ta có: AK = AH

P thuộc AB => PK = PH 

Xét \(\Delta\)AKP và \(\Delta\)AHP có: 

AK = AH; PK = PH; AP chung 

=> \(\Delta\)AKP = \(\Delta\)AHP  

b) Ta có: AK = AH = AL 

=> \(\Delta\)AKL cân tại A => ^AKL = ^ALK  => ^AKP =^ALQ (1)

(a) => ^AKP = ^AHP  (2)

Dễ dàng chứng minh \(\Delta\)AHQ = \(\Delta\)ALQ ( tương tự câu a) 

=>  ^ALQ = ^AHQ (3) 

Từ (1) ; (2) ; (3) => ^AHP = ^AHQ => HA là phân giác ^PHQ

Khách vãng lai đã xóa
Hoàng Hiệp
Xem chi tiết
Hoàng
5 tháng 1 2021 lúc 19:22

hình bn ơi

 

Huỳnh Hoàng Thanh Như
Xem chi tiết
Vũ Anh Khôi
4 tháng 2 lúc 9:29

a) Vì A thuộc đường trung trực của HD nên suy ra :AD=AH (1)

 

Vì A thuộc đường trung trực của HE nên suy ra :AE=AH (2)

 

Từ (1) và (2) ta có: AD=AH=AE

 

=> AD=AE(đpcm)

 

b) Kẻ I với H ; K với H

 

Theo câu a ta có AD=AE 

 

=>Tam giác ADE cân tại A => góc ADE =góc AED 

 

Vì AD=AH nên =>tam giác ADH cân tại A 

 

=>góc ADH =góc AHD (1)

 

Vì AE=AH nên => tam giác AHE cân tại A 

 

=> góc AHE=góc AEH (2) 

 

Vì K thuộc đường trung trực của HE 

 

=> KE = KH => tam giác KHE cân tại K

 

=> góc KHE =góc KEH (3)

 

Vì I thuộc đường trung trực của HD 

 

=> ID = IH => tam giác IDH cân tại I

 

=> góc IDH =góc IHD (4)

 

Từ (1)và (4) =>góc ADE=AHI

 

Từ (2)và (4) =>góc AED=AHK 

 

Mà ADE=AED(cmt) => AHI=AHK 

 

Vậy suy ra HA là tia p/g của góc IHK

Shiragami Yamato
Xem chi tiết