Cho M=1/11+1/12+1/13+.....1/19+1/20
a, 13/19 + 1 - 15/19 - 4/19
b, 3/5 +6/11 +7/13 +2/5 +16/11 +19/13
c, 1/3 +1/6 + 1/12 +1/24 +1/48
d, 1/2 +1/6 +1/12 +1/20 +1/30 +1/42
cho A= 1/11+1/12+1/13+...+1/19+1/20. So sánh A với 1/2
ta có: \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}+\frac{1}{20}\)( Có 10 phân số 1/20)
\(=\frac{10}{20}=\frac{1}{2}\)
\(\Rightarrow A=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}+\frac{1}{20}>\frac{1}{2}\)
Chúc bn học tốt !!!!
CMR:
1-1/2+1/3-1/4+...+1/19-1/20=1/11+1/12+1/13+...+1/19+1/20
CHO A = 1/11 + 1/12+ 1/13 +...+ 1/19 + 1/20
SO SÁNH A VỚI 1/2
1/11 + 1/12+ 1/13 +...+ 1/19 + 1/20 > 1/20 + 1/20 + 1/20 + ... + 1/20
= 10/20 = 1/2
Vậy A > 1/2.
cho S = 1/11+1/12+1/13+...+1/19+1/20
chứng minh rằng 1/2 < S <1
Ta có 1/20 + 1/20 + 1/20 + ... + 1/20 + 1/20 < 1/11 + 1/12 + 1/13 + ... + 1/19 + 1/20 < 1/10 + 1/10 + 1/10 + ... + 1/10 + 1/10 = 10/20 < S < 10/10 \(\Rightarrow\)1/2 < S < 1 ( đpcm )
Ta có : 1/11+1/12+1/13+...+1/19+1/20 > 1/20+1/20+1/20+...+1/20+1/20 =10/20=1/2
có tất cả 10 phân số 1/20
=> S > 1/2
1/11+1/12+1/13+...+1/19+1/20 < 1/10+1/10+1/10+...+1/10+1/10 =10/10=1
có tất cả 10 phân số /10
=> S<1
=> 1/2 < S <1
so sánh 1/1*2+1/2*3+...+1/19*20 và 1/11+1/12+1/13+...+1/20
giải toán lớp 6 cho A=1/11+1/12+1/13+1/14+1/15+1/16+1/17+1/18+1/19+1/20
chứng minh rằng 1-1/2+1/3-1/4+..................+1/19-1/20=1/11+1/12+1/13+.................+1/20
Xét: 1-1/2+1/3-1/4+...+1/19-1/20 = (1+1/3+1/5+...1/19) - (1/2+1/4+1/6+...+1/20)
= (1+ 1/2+1/3+...+1/20) - 2.(1/2+1/4+...+1/20)
= (1+1/2+1/3+...+1/20) - (1+1/2+...+1/10)
= 1/11+1/12+1/13+...+1/20 (dpcm)
Vậy, 1-1.2+1/3-1/4+...+1/19-1/20=1/11+1/12+1/13+...+1/20
cho s=1/11+1/12+1/13+1/14+1/15+1/16+1/17+1/18+1/19+1/20. hãy so sánh với 1/2
Ta có các phân số 1/11 ; 1/12 ; 1/13 ; 1/14 ; 1/15 ; 1/16 ; 1/17 ; 1/18 ; 1/19 đều lớn hơn 1/20
Do đó : 1/11 + 1/12 + 1/13 + 1/14 + 1/15 + 1/16 + 1/17 + 1/18 + 1/19 + 1/20 > 1/20 + 1/20 + ;...+ 1/20 ( có 10 phân số 1/20 )
1/11 + 1/12 + 1/13 + 1/14 + 1/15 + 1 /16 + 1/17 + 1/18 + 1/19 + 1/20 > 10/20
1/11 + 1/12 + 1/13 + 1/14 + 1/15 + 1 /16 + 1/17 + 1/18 + 1/19 + 1/20 > 1/2
Vậy : S > 1/2