Giá trị nhỏ nhất của A=x^2+2y^2-2xy+2x-10y+1
Tìm giá trị nhỏ nhất của
A) x^2+2y^2-2xy+2x-10y
Ta thấy x2x2 và y2y2 luôn lớn hơn hoặc bằng 0 với mọi x
Nên để A đạt GTNN thì x = 0 và y = 0, do đó A = 0 + 0 - 0 + 0 - 0 = 0
Vậy Min A = 0
Còn cách khác nữa như sau :
Nhập biểu thức vào máy : 2x + 4y - 2xy + 2x - 10y = 0 SHIFT SOLVE
Y? 0 =
Solve for X? 0 =
KQ ra Solve x = 0
Vậy Min A = 0 khi x = 0 và y = 0.
tìm giá trị nhỏ nhất của biểu thức sau A=x^2-2xy+2y^2+2x-10y+2033
\(A=x^2-2xy+y^2+2x-2y+1+y^2-8y+16+2016\)
\(A=\left(x-y\right)^2+2\left(x-y\right)+1+\left(y-4\right)^2+2016\)
\(A=\left(x-y+1\right)^2+\left(y-4\right)^2+2016\)
vì \(\left(x-y+1\right)^2\ge0\)
\(\left(y-4\right)^2\ge0\)
nên \(\left(x-y+1\right)^2+\left(y-4\right)^2+2016\ge2016\)
dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}x=3\\y=4\end{cases}}\)
vậy gtnn của bt là 2016 khi x=3;y=4
đề này của sở giáo dục và đào tạo tỉnh hà nam
mk chiu ban ak di thi mk cug vao caau day nhưng ko biet lam
tìm giá trị nhỏ nhất của các biểu thức: A= x^2+2y^2-2xy+2x-2y+1 B=x^2+2y^2-2xy+2x-10y
A = x2 + 2y2 - 2xy + 2x - 2y + 1
= x2 - 2xy + y2 + 2 ( x - y ) + 1 + y2
= ( x - y )2 + 2 ( x - y ) + 1 + y2
= ( x - y + 1 )2 + y2 ≥ 0
Dấu = xảy ra khi :
\(\left\{{}\begin{matrix}x-y+1=0\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=0\end{matrix}\right.\)
B = x2 + 2y2 - 2xy + 2x - 10y
= x2 - 2xy + y2 + 2x - 2y + 1 + y2 - 8x + 16 - 17
= ( x - y )2 + 2 ( x - y ) + 1 + ( y - 4 )2 - 17
= ( x - y + 1 )2 + ( y - 4 )2 - 17 ≥ - 17
Dấu = xảy ra khi :
\(\left\{{}\begin{matrix}x-y+1=0\\y-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)
Bài 1: Tìm giá trị nhỏ nhất của:
a) F = x^2+26y^2-10xy+14x-76y+59
b) H = m^2-4mp+5p^2+10m-22p+28
Bài 2: Tìm giá trị lớn nhất của:
a) A = x^2+2y^2-2xy+2x-2y+1
b) B = x^2+2y^2-2xy+2x-10y
c) C = x^2+y^2+xy+3x-3y+2015
d) D = -5x^2-2xy-2y^2+14x+10y-1
Bài 1:
a)\(F=x^2+26y^2-10xy+14x-76y+59\)
\(=\left(x^2-2\cdot x\cdot5y+25y^2\right)+\left(14x-70y\right)+\left(y^2-6x+9\right)+50\)
\(=[\left(x-5y\right)^2+14\left(x-5y\right)+49]+\left(y-3\right)^2+1\)
\(=\left(x-5y+7\right)^2+\left(y-3\right)^2+1\ge1\)
Để Fmin=1 thì y=3;x=8
b)\(H=m^2-4mp+5p^2+10m-22p+28\)
\(=\left(m^2-2\cdot m\cdot2p+4p^2\right)+\left(10m-20p\right)+\left(p^2-2p+1\right)+27\)
\(=[\left(m-2p\right)^2+2\cdot\left(m-2p\right)\cdot5+25]+\left(p-1\right)^2+2\)
\(=\left(m-2p+5\right)^2+\left(p-1\right)^2+2\ge2\)
Để Hmin=2 thì p=1;m=-3
Tìm GTLN (Giá trị lớn nhất) hoặc GTNN (Giá trị nhỏ nhất) của :
C = x2 - 4xy + 2y2 - 10y + 6
D = x2 - 2xy + 3y2 - 2x - 10y + 20
E = x2 + 2y2 - 2 xy + 2x -10y
Tìm GTLN (Giá trị lớn nhất) hoặc GTNN (Giá trị nhỏ nhất) của :
C = x2 - 4xy + 2y2 - 10y + 6
D = x2 - 2xy + 3y2 - 2x - 10y + 20
E = x2 + 2y2 - 2 xy + 2x -10y
Tìm GTLN (Giá trị lớn nhất) hoặc GTNN (Giá trị nhỏ nhất) của :
C = x2 - 4xy + 2y2 - 10y + 6
D = x2 - 2xy + 3y2 - 2x - 10y + 20
E = x2 + 2y2 - 2 xy + 2x -10y
Tìm GTLN (Giá trị lớn nhất) hoặc GTNN (Giá trị nhỏ nhất) của :
C = x2 - 4xy + 2y2 - 10y + 6
D = x2 - 2xy + 3y2 - 2x - 10y + 20
E = x2 + 2y2 - 2 xy + 2x -10y
Sửa đề:
\(C=x^2-4xy+5y^2-10y+6\)
\(C=\left(x^2-4xy+4y^2\right)+\left(y^2-10y+25\right)-19\)
\(C=\left(x-2y\right)^2+\left(y-5\right)^2-19\ge-19\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-2y\right)^2=0\\\left(y-5\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2y\\y=5\end{cases}}\Rightarrow\hept{\begin{cases}x=10\\y=5\end{cases}}\)
Vậy \(Min_C=-19\Leftrightarrow\hept{\begin{cases}x=10\\y=5\end{cases}}\)
\(D=x^2-2xy+2y^2-2x-10y+20\)
\(D=\left(x-y\right)^2-2\left(x-y\right)+1+\left(y^2-12y+36\right)-17\)
\(D=\left(x-y-1\right)^2+\left(y-6\right)^2-17\ge-17\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-y-1\right)^2=0\\\left(y-6\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=y+1\\y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=7\\y=6\end{cases}}\)
Vậy \(Min_D=-17\Leftrightarrow\hept{\begin{cases}x=7\\y=6\end{cases}}\)
\(E=x^2+2y^2-2xy+2x-10y\)
\(E=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+1+\left(y^2-8y+16\right)-17\)
\(E=\left(x-y\right)^2+2\left(x-y\right)+1+\left(y-4\right)^2-17\)
\(E=\left(x-y+1\right)^2+\left(y-4\right)^2-17\ge-17\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-y+1\right)^2=0\\\left(y-4\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=y-1\\y=4\end{cases}\Rightarrow}\hept{\begin{cases}x=3\\y=4\end{cases}}\)
Vậy \(Min_E=-17\Leftrightarrow\hept{\begin{cases}x=3\\y=4\end{cases}}\)
Tìm GTLN (Giá trị lớn nhất) hoặc GTNN (Giá trị nhỏ nhất) của :
C = x2 - 4xy + 2y2 - 10y + 6
D = x2 - 2xy + 3y2 - 2x - 10y + 20
E = x2 + 2y2 - 2 xy + 2x -10y