(x^3-2x^2-15x+36):(x+4)
phan tich da thuc sau thanh nhan tu
a x^3-9x^2+15x+25
b x^3-4x^2-11x+30
c 2x^4+x^3-22x^2+15x-36
Phân tích đa thức sau thành nhân tử:
a) x3-9x2+15x+25
b)2x4+x3-22x2+15x-36
c)x3-4x2-11x+30
\(x^3+x^2+9x-10x^2-10x+25x+25\)
\(=x^2\left(x+1\right)-10x\left(x+1\right)+25\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-10x+25\right)=\left(x+1\right)\left(x-5\right)^2\)
giúp mình nhé!
tìm x biết
phần a: (2x+1)^2= 25 ; (2x-3)^2= 36
phần b: 5^x+2= 625 ; (2x -1)^3= -8
phần c: (x-3)^2+(15x-45)^4= 0 ; |x-3|+(x^2-3x)^2= 0
\(a)\left(2x+1\right)^2=25\)
\(\Rightarrow\left(2x+1\right)^2=\left(\pm5\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}2x+1=5\\2x+1=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=4\\2x=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
\(\left(2x-3\right)^2=36\)
\(\Rightarrow\left(2x-3\right)^2=\left(\pm6\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=9\\2x=-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{9}{2}\\x=-\frac{3}{2}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=\frac{9}{2}\\x=-\frac{3}{2}\end{matrix}\right.\)
\(b)5^x+2=625\)
\(\Rightarrow5^x=623\)
\(\Rightarrow x\in\varnothing\)
Vậy \(x\in\varnothing\)
\(\left(2x-1\right)^3=-8\)
\(\Rightarrow\left(2x-1\right)^3=\left(-2\right)^3\)
\(\Rightarrow2x-1=-2\)
\(\Rightarrow2x=-1\)
\(\Rightarrow x=-\frac{1}{2}\)
\(c)\left(x-3\right)^2+\left(15x-45\right)^4=0\)
- Có \(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0,\forall x\\\left(15x-45\right)^4\ge0,\forall x\end{matrix}\right.\Rightarrow\left(x-3\right)^2+\left(15x-45\right)^4\ge0,\forall x\)
Suy ra: Để \(\left(x-3\right)^2+\left(15x-45\right)^4=0\) thì \(\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left(15x-45\right)^4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-3=0\\15x-45=0\end{matrix}\right.\Rightarrow x=3\)
\(\left|x-3\right|+\left(x^2-3x\right)^2=0\)
- Có \(\left\{{}\begin{matrix}\left|x-3\right|\ge0,\forall x\\\left(x^2-3x\right)^2\ge0,\forall x\end{matrix}\right.\Rightarrow\left|x-3\right|+\left(x^2-3x\right)^2\ge0,\forall x\)
Suy ra: Để \(\left|x-3\right|+\left(x^2-3x\right)^2=0\)thì \(\left\{{}\begin{matrix}\left|x-3\right|=0\\\left(x^2-3x\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-3=0\\x^2-3x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\x\left(x-3\right)=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Thực hiện phép chia:
a) ( x 3 - 2 x 2 - 15x + 36) : (x + 4);
b) ( 2 x 4 + 2 x 3 + 3 x 2 - 5x - 20) : ( x 2 + x + 4);
c) (2 x 3 + 11 x 2 + 18x-3) : (2x + 3);
d) (2x3 + 9x2 +5x + 41) : (2x2 - x + 9).
a) Đa thức thương x 2 – 6x + 9.
b) Đa thức thương 2 x 2 – 5.
c) Đa thức thương x 2 + 4x + 3 và đa thức dư -12.
d) Đa thức x + 5 và đa thức dư x – 4.
5xy(2x^3y^2-7xy+3y) (-6x^6+15x^2-4x^4):3x^2 (x^2-y^2-12x+36):(x+y-6)
\(5xy\left(2x^3y^2-7xy+3y\right)=10x^4y^3-35x^2y^2+15xy^2\\ \left(-6x^6+15x^2-4x^4\right):3x^2=-2x^4+5-\dfrac{4}{3}x^2\\ \left(x^2-y^2-12x+36\right):\left(x+y-6\right)\\ =\left[\left(x-6\right)^2-y^2\right]:\left(x+y-6\right)\\ =\left(x-y-6\right)\left(x+y-6\right):\left(x+y-6\right)\\ =x-y-6\)
phân tích đa thức thành nhân tử:
x^5-7x^4-x^3+43x^2-36
x^5-4x^4-13x^3+52x^2+36x-144
x^4+2x^3-15x^2-18x+64
x^3-x^2-4
x^3-3x^2-4x+12
mk ghi kết quả thôi nhé, nếu từ kết quả mak k biết biến đổi thì ib cho mk
\(x^5-7x^4-x^3+43x^2-36=\left(x-6\right)\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)\)
câu thứ 2 bạn ktra lại đề
\(x^4+2x^3-15x^2-18x+64=\left(x-2\right)\left(x^3+4x^2-7x-32\right)\)
\(x^3-x^2-4=\left(x-2\right)\left(x^2+x+2\right)\)
\(x^3-3x^2-4x+12=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
a) \(x^5-7x^4-x^3+43x^2-36\)
\(=x^3\left(x^2-1\right)-7x^2\left(x^2-1\right)+36\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^3-7x^2+36\right)=\left(x-1\right)\left(x+1\right)\left(x^3+2x^2-9x^2-18x+18x+36\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x^9-9x+18\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x-3\right)\left(x-6\right)\)
c) \(x^4+2x^3-15x^2-18x+64\)
\(=x^3\left(x-2\right)+4x^2\left(x-2\right)-7x\left(x-2\right)-32\left(x-2\right)\)
\(=\left(x-2\right)\left(x^3+4x^2-7x-32\right)\)
d) \(x^3-x^2-4=x^2\left(x-2\right)+x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+x+2\right)\)
e) \(x^3-3x^2-4x+12=x\left(x^2-4\right)-3\left(x^2-4\right)\)
\(=\left(x^2-4\right)\left(x-3\right)=\left(x-2\right)\left(x+2\right)\left(x-3\right)\)
Phân ích đa thức thành nhân tử
a, x3-x2-4
b, x3-5x2+8x-4
c, 2x3-12x2+17x-2
d, 2x4+x3-22x2+15x+36
a) \(x^3-x^2-4=x^3-2x^2+x^2-4=x^2\left(x-2\right)+\left(x-2\right)\left(x+2\right)=\left(x-2\right)\left(x^2+x+2\right)\)
b) \(x^3-5x^2+8x-4=x^3-x^2-4x^2+4x+4x-4=x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-4x+4\right)=\left(x-1\right)\left(x-2\right)^2\)
c) \(2x^3-12x^2+17x-2=2x^3-4x^2-8x^2+16x+x-2=2x^2\left(x-2\right)-8x\left(x-2\right)+\left(x-2\right).\)
\(=\left(x-2\right)\left(2x^2-8x+1\right)\)
d) \(2x^4+x^3-22x^2+15x+36=2x^4+2x^3-x^3-x^2-21x^2-21x+36x+36.\)
\(=2x^3\left(x+1\right)-x^2\left(x+1\right)-21x\left(x+1\right)+36\left(x+1\right)\)
\(=\left(x+1\right)\left(2x^3-x^2-21x+36\right)\)
Phân tích đa thức thành nhân tử
2x^4+x^3-22x^2+15x-36
Mấy em lớp 8 nên tự phân tích nhân tử thành thạo đi nhé lên học 24 là để hỏi những câu hỏi khó
\(2x^4+x^3-22x^2+15x-36=\) \(2x^4-6x^3+7x^3-21x^2-x^2+3x+12x-36=2x^3\left(x-3\right)+7x^2\left(x-3\right)-x\left(x-3\right)+12\left(x-3\right)=\left(x-3\right)\left(2x^3+7x^2-x+12\right)=\left(x-3\right)\left(2x^3+8x^2-x^2-4x+3x+12\right)=\left(x-3\right)[2x^2\left(x+4\right)-x\left(x+4\right)+3\left(x+4\right)]=\left(x-3\right)\left(x+4\right)\left(2x^2-x+3\right)\)
phân tích đa thức thành nhân tử \(2x^4+x^3-22x^2+15x-36.\)
làm nhanh mình cần gấp
\(2x^4+x^3-22x^2+15x-36\)
\(=\left(2x^4-6x^3\right)+\left(7x^3-21x^2\right)+\left(-x^2+3x\right)+\left(12x-36\right)\)
\(=\left(x-3\right)\left(2x^3+7x^2-x+12\right)\)
\(=\left(x-3\right)\left(\left(2x^3+8x^2\right)+\left(-x^2-4x\right)+\left(3x+12\right)\right)\)
\(=\left(x-3\right)\left(x+4\right)\left(2x^2-x+3\right)\)