Giả sử :n=1.e.5.....2015
CMR:trong 3 số nguyên liên tiếp 2n-1;2n;2n+1 không có số nào là số chính phương
Giả sử:n=1.3.5.7.....2015
CMR:trong 3 số nguyên liên tiếp 2n-1;2n;2n+1 không có số nào là số chính phương
Giả sử N =1.3.5....2007
Chứng minh 3 số nguyên liên tiếp 2N-1, 2N và 2N+1 không số nào là số chính phương
Giả sử N = 1.3.5.7 . . . 2007. 2011
Chứng minh rằng trong 3 số nguyên liên tiếp 2N - 1, 2N và 2N + 1 không có số nào là số
chính phương.
Giả sử N=1.3.5.7...2007. Chứng minh rằng trong 3 ssos nguyên liên tiếp 2N-1, 2N và 2N+1 không có số nào là số chính phương.
giúp với
giả sử N=1.3.5.7...2007.2011
CMR rằng trong 3 số nguyên liên tiếp 2N-1,2N,2N+1
mình cần rất gấp
Giả sử N=1.3.5.7..2017
CMR: Trong 3 số nguyên liên tiếp 2N-1,2N,2N+1 không có số nào là số chính phương.
Giúp mik làm này nha. Thanks các bạn nhìu lắm.
Chưng minh rằng : Các số sau đây là các số nguyên tố cùng nhau :
a , Số lẻ liên tiếp ( 2n + 1 , 2n + 3 )
b , 2n + 5 và 3n + 7 ( n thuộc N )
a, Ta phải chứng minh ƯCLN(2n+1 ; 2n+3)=1
đặt : ƯCLN(2n+1;2n+3)=d
Suy ra : 2n+1 chia hết cho d
2n+3 chia hết cho d
Nên (2n+3) - (2n+1) chia hết cho d Hay 2 chia hết cho d
=> d thuộc Ư(2)={1;2}
loại d=2 (vì d khác 2)
=> d = 1
Vậy 2 số tự nhiên lẻ liên tiếp nhau là 2 số nguyên tố cùng nhau
b, Gọi ƯCLN ( 2n+5 ; 3n+7)=p
Suy ra : 2n+5 chia hết cho p Hay 3.(2n+5)=6n+15 chia hết cho p
3n+7 chia hết cho p Hay 2.(3n+7)=6n+14 chia hết cho p
Nên : (6n+15) - (6n+14) chia hết cho p hay 1chia hết cho p
=>p= 1
vậỷ 2n+5 và 3n+7 là 2 số nguyên tố cùng nhau
1)chứng tỏ tổng 3 số nguyên liên tiếp thì chia hết cho 3
2)chứng tỏ tổng 5 số nguyên liên tiếp thì chia hết cho 5
3) tìm n:
a,(4n-5) chia hết n
b,(-11) là B(n-1)
c,(2n-1) là Ư (3n +2)
1/ Gọi 3 số nguyên liên tiếp đó là a; a + 1; a + 2
Trong 3 số nguyên liên tiếp có ít nhất 1 số chia hết cho 3, ta cho số đó là a
Ta có: a + a + 1 + a + 2 = a + a + a + 1 + 2 = 3a + 3
mà 3a và 3 chia hết cho 3
=> Tổng 3 số nguyên liên tiếp chia hết cho 3 (điều cần chứng minh)
\(CMR:\)
a,Trong hai số nguyên liên tiếp có 1 và chỉ 1 số chia hết cho 2
b,Trong ba số nguyên liên tiếp có 1 và chỉ 1 số chia hết cho 3
c,Tổng của 3 số nguyên liên tiếp chia hết cho 3
d,Tổng của 5 số nguyên liên tiếp chia hết cho 5
e,Tổng của n số nguyên lẻ liên tiếp chia hết cho n
C)gọi 3 số nguyên liên tiếp lần lượt là a, a+1 ,a+2
ta có:
a+(a+1)+(a+2)
=3a+3
=3(a+1) => chia hết cho 3
d) Gọi 5 số nguyên liên tiếp ần lượt là a, a+1, a+2, a+3, a+4
Ta có: a + a+1 + a+2 +a+3 +a+4
=5a +10
=5(a+2) => chi hết cho 5