Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Linhk8
Xem chi tiết
Kiyotaka Ayanokoji
23 tháng 6 2020 lúc 18:14

Ta có:

\(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

                                                                        \(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

                                                                        \(=\frac{1}{2}-\frac{1}{100}\)

                                                                       \(=\frac{49}{100}\)

Mà \(\frac{49}{100}< \frac{1}{2}\)

Vậy \(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2}\)

Khách vãng lai đã xóa
Gukmin
23 tháng 6 2020 lúc 18:22

Ta có:\(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)(1)

Xét\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}\)

\(=\frac{50}{100}-\frac{1}{100}\)

\(=\frac{49}{100}\)(2)

\(\frac{49}{100}< \frac{50}{100}=\frac{1}{2}\)(3)

Từ (1), (2), (3)\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2}\left(đpcm\right)\)

Vậy...

Linz

Khách vãng lai đã xóa
.
23 tháng 6 2020 lúc 18:33

Ta có : \(\frac{1}{3^2}< \frac{1}{2.3}\)

            \(\frac{1}{4^2}< \frac{1}{3.4}\)

            \(\frac{1}{5^2}< \frac{1}{4.5}\)

             ...

            \(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)

\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{2}\left(đpcm\right)\)

Khách vãng lai đã xóa
Đặng Thu Hằng
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
2 tháng 5 2016 lúc 9:55

Ta có: 1/2^2 < 1/1.2

          1/3^2 < 1/2.3 

        .........................

.......................................

          1/100^2 < 1/99.100

Ta có: 1/2^2 + 1/3^2 + 1/4^2 +......+1/100^2 < 1/1.2 + 1/2.3 + 1/3.4 + ...... + 1/99.100

          1/2^2 + 1/3^2 + 1/4^2 +......+1/100^2 < 1 - 1/100

          1/2^2 + 1/3^2 + 1/4^2 +......+1/100^2 < 99/100 < 3/4

         1/2^2 + 1/3^2 + 1/4^2 +......+1/100^2 < 3/4

Siêu Hacker
2 tháng 5 2016 lúc 10:00

Ta có: 1/2^2 < 1/1.2

          1/3^2 < 1/2.3 

        .........................

.......................................

          1/100^2 < 1/99.100

Ta có: 1/2^2 + 1/3^2 + 1/4^2 +......+1/100^2 < 1/1.2 + 1/2.3 + 1/3.4 + ...... + 1/99.100

          1/2^2 + 1/3^2 + 1/4^2 +......+1/100^2 < 1 - 1/100

          1/2^2 + 1/3^2 + 1/4^2 +......+1/100^2 < 99/100 < 3/4

         1/2^2 + 1/3^2 + 1/4^2 +......+1/100^2 < 3/4

Monkey D Luffy
Xem chi tiết
Kalluto Zoldyck
28 tháng 4 2016 lúc 19:57

Gọi tổng trên là A

A = 1/3.3 + 1/4.4 +.....+ 1/100.100

A < 1/2.3 + 1/3.4 +.....+ 1/99.100

A < 1/2 - 1/3 + 1/3 - 1/4 +.....+ 1/99 - 1/100

A < 1/2 - 1/100

A < 49/100 < 1/2

=> A < 1/2 (đpcm)

Ai k mk mk k lai cho !!

ღ子猫 Konღ
Xem chi tiết
Lê Thanh Minh
30 tháng 4 2018 lúc 9:49

A=\(1+\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)

Đặt B=\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+..+\)\(\frac{1}{99.100}=\)\(1-\frac{1}{100}< 1\)

Mà A=1+B=>A=1+B<1+1=2

Trần Cao Vỹ Lượng
30 tháng 4 2018 lúc 10:24

\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 2\)

\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

vậy \(A=\frac{99}{100}< 2\left(đpcm\right)\)

B)

ta có : \(1=1\)

\(\frac{1}{2}+\frac{1}{3}< \frac{1}{2}+\frac{1}{2}=1\)

\(\frac{1}{4}+\frac{1}{5}+...+\frac{1}{7}< \frac{1}{4}+...+\frac{1}{4}=\frac{4}{4}=1\)

\(\frac{1}{8}+\frac{1}{9}+...+\frac{1}{15}< \frac{1}{8}+...+\frac{1}{8}=\frac{8}{8}=1\)

\(\frac{1}{16}+\frac{1}{17}+...+\frac{1}{63}< 1\)

tất cả công lại \(\Rightarrow B< 6\)

Nguyễn Tuyết Mai
Xem chi tiết
Le Thi Khanh Huyen
27 tháng 4 2015 lúc 19:13

Ta có:

\(\frac{1}{3^2}

Edogawa Conan
22 tháng 8 2018 lúc 20:42

\(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)

Ta có : Đặt A = \(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)

                      = \(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

                      = \(A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

                      = \(A< \frac{1}{2}-\frac{1}{100}\)

                      = \(A< \frac{49}{100}< \frac{1}{2}\)

Vậy A < 1/2 

Vy Vy
Xem chi tiết
Ngô Huy Hoàng
11 tháng 5 2016 lúc 8:20

theo bài ra ta có:

1/32 <1/(2.3); 1/42<1/(3.4);1/52<1/(4.5);...;1/1002<1/(99.100)

=> 1/3^2+1/4^2+1/5^2+...+1/100^2  < 1/(2.3) + 1/3.4) +1/(4.5) +...+ 1/(99.100)   (1)

mà 1/(2.3)+1/(3.4) +1/(4.5) +...+ 1/(`99.100) = 1- 1/100= 99/100

ta có 99/100<1/2   (2)

từ (1) và (2)

=> điều phải CM

Hà Thị Minh Thu
Xem chi tiết
Vũ Trà My
24 tháng 4 2015 lúc 19:53

Có 1/3^2+1/4^2+1/5^2+..+1/100^2< 1/2.3+...+1/99.100

                                                       =1/2-1/3+1/3-1/3+...+1/99-1/100 

                                                       =1/2-1/100<1/2

 

Nguyễn Lê Minh Hiền
Xem chi tiết
Hoàng Phúc
17 tháng 5 2016 lúc 14:58

Đặt \(A=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+....+\frac{1}{100^2}\)

Ta có: \(\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};\frac{1}{5^2}< \frac{1}{4.5};......;\frac{1}{100^2}< \frac{1}{99.100}\)

\(=>A< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{99.100}\)

\(=>A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(=>A< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)

Vậy \(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.....+\frac{1}{100^2}< \frac{1}{2}\left(đpcm\right)\)
 

Nguyễn Thế Bảo
17 tháng 5 2016 lúc 15:00

Bạn xem lời giải của mình nhé:

Giải:

Gọi \(A=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}\)

\(\frac{1}{3^2}< \frac{1}{3.4}\\ \frac{1}{4^2}< \frac{1}{4.5}\\ ...\\ \frac{1}{100^2}< \frac{1}{99.100}\\ \Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(\Rightarrow A< \frac{1}{3}-\frac{1}{100}\\ \frac{1}{3}< \frac{1}{2}\Rightarrow\frac{1}{3}-\frac{1}{100}< \frac{1}{2}\\ \Rightarrow A< \frac{1}{2}\)

Chúc bạn học tốt!hihi

Hoàng Phúc
17 tháng 5 2016 lúc 15:09

Nguyễn Thế Bảo sai rồi,1/3^2<1/2.3 chứ sao là 1/3.4 đc?

Five centimeters per sec...
Xem chi tiết
Thùy Trang Nguyễn
9 tháng 5 2017 lúc 7:46

Ta có :\(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

=\(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}=\)\(\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)\)\(+...+\left(1-\frac{1}{100}\right)\)

=\(\left(1+1+1+....+1\right)\)\(-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)

=             \(99-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)

=  \(100-1-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)

=\(100-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)= vế trên (đpcm)

le bao truc
9 tháng 5 2017 lúc 8:29

\(S=100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(S=\left(1+1+...+1\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(S=\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+...+\left(1-\frac{1}{100}\right)\)
\(S=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)
\(\RightarrowĐPCM\)

tuandung2912
2 tháng 4 2023 lúc 21:34

cunasai