Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
luc1172006
Xem chi tiết
Vương Nguyệt
18 tháng 11 2019 lúc 21:12

\(A=x^2+2xy+y^2-4x-4y+1\)

\(A=\left(x+y\right)^2-4\left(x+y\right)+1\)

\(A=3^2-4.3+1\)

\(A=-2\)

Khách vãng lai đã xóa
Nguyễn Thùy Trang ( team...
18 tháng 11 2019 lúc 21:12

\(x^2+2xy+y^2-4x-4y+\)\(1\)

\(=\left(x^2+2xy+y^2\right)-\left(4x+4y\right)+1\)

\(=\left(x+y\right)^2-4\left(x+y\right)+1\)

Thay x+y = 1, ta có:

\(=3^2-4.3+1=-2\)

Khách vãng lai đã xóa
Nguyễn Thùy Trang ( team...
18 tháng 11 2019 lúc 21:15

Bạn tham khảo cách 2 nhé !

\(x^2+2xy+y^2-4x-4y+1\)

\(=\left(x^2+y^2+1+2xy-2x-2y\right)-2x-2y\)

\(=\left[1-\left(x+y\right)\right]^2-2\left(x+y\right)\)

Thay x+y=1 ta có 

\(=\left(1-3\right)^2-2.3\)

\(=-2\)

Khách vãng lai đã xóa
nguyễn thị kim ngân
Xem chi tiết
Linh Doan
18 tháng 2 2016 lúc 20:15

vì n-1 là Ư của 5 => n-1=1 hoặc 5

n-1=5=>n=6

n-1=1=>n=2

=> n =6 hoặc n=2

thong oy ấy k ik

Trang
18 tháng 2 2016 lúc 19:49

n-1 là ước của 5 => n-1 E { 1;-1;5;-5 }

với n-1=1 => n=2với n-1=-1 => n=0với n-1=5 => n=6với n-1= -5 => n=-4

vậy n={ 0;2;-4;6 }

b) A= -5/m-1 có giá trị nguyên => -5 chia hết cho m-1 hay m-1 E Ư(-5)={ -1; 1; 5; -5 }

với m-1= -1 => m=0với m-1= 1 => m = 2với m-1=5 => m=6m-1= -4 => m= --3

vậy m={ 0;2;-3;6 }

Phan Thanh Tịnh
18 tháng 2 2016 lúc 19:49

a) \(n-1\inƯ\left(5\right)\Rightarrow n-1\in\left\{-5;-1;1;5\right\}\Rightarrow n\in\left\{-4;0;2;6\right\}\)

b) \(A\in Z\)khi -5 là bội của m-1 nên \(m-1\in\left\{-5;-1;1;5\right\}\Rightarrow m\in\left\{-4;0;2;6\right\}\)

HOANG THI NGOC ANH
Xem chi tiết
Edogawa Conan
1 tháng 10 2017 lúc 16:09

Câu 1: Ta có: A = \(x^3+y^3+3xy=x^3+y^3+3xy\times1=x^3+y^3+3xy\left(x+y\right)\)

\(=\left(x+y\right)^3=1^3=1\)

Câu 2: Ta có: \(B=x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)

\(=x^2+xy+y^2-3xy=x^2-2xy+y^2=\left(x-y\right)^2=1^2=1\)

Câu 3: Ta có: \(C=x^3+y^3+3xy\left(x^2+y^2\right)-6x^2.y^2\left(x+y\right)\)

\(=x^3+y^3+3xy\left(x^2+2xy+y^2-2xy\right)+6x^2y^2\)

\(=x^3+y^3+3xy\left(x+y\right)^2-3xy.2xy+6x^2y^2\)

\(=x^3+y^3+3xy.1-6x^2y^2+6x^2y^3\)

\(=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1^3=1\)

Cao Hoài Phúc
Xem chi tiết
Cao Hoài Phúc
Xem chi tiết
Cao Hoài Phúc
Xem chi tiết
Poku no Pico
Xem chi tiết
肖战Daytoy_1005
7 tháng 3 2021 lúc 20:02

Theo bài ra, ta có: \(x^2-y=y^2-x\Leftrightarrow x^2-y^2=-x+y\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)=-\left(x-y\right)\)

\(\Leftrightarrow\left(x+y\right)=-1\)

Ta lại có: \(A=x^2+2xy+y^2-3x-3y=\left(x+y\right)^2-3\left(x+y\right)\)

Thay x+y=-1 vào biểu thức A, ta được: \(A=\left(-1\right)^2-3.\left(-1\right)=1+3=4\)

Vậy A=4

nguyenhuonggiang
Xem chi tiết
Nguyễn Phạm Châu Anh
31 tháng 3 2017 lúc 20:34

\(M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\)

\(M=\frac{1}{16x}+\frac{4}{16y}+\frac{16}{16z}\)

\(M=\frac{1^2}{16x}+\frac{2^2}{16y}+\frac{4^2}{16z}\)

\(M\ge\frac{\left(1+2+4\right)^2}{16\left(x+y+z\right)}\)

    \(=\frac{49}{16}\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{1}{16x}=\frac{2}{16y}=\frac{4}{16z}=\frac{1+2+4}{16\left(x+y+z\right)}=\frac{7}{16}\) 

\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{7}\\y=\frac{2}{7}\\z=\frac{4}{7}\end{cases}}\)

huỳnh minh quí
31 tháng 3 2017 lúc 20:42

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow x+y+z\ge3\sqrt[3]{xyz}\)

\(\Rightarrow1\ge3\sqrt[3]{xyz}\)

\(\Rightarrow\frac{1}{27}\ge xyz\)

Ta có  \(M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\)

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{64xyz}}\)( 1 ) 

Xét  \(3\sqrt[3]{\frac{1}{64xyz}}\)

Ta có  \(\frac{1}{27}\ge xyz\)

\(\Rightarrow\frac{64}{27}\ge64xyz\)

\(\Rightarrow\frac{27}{64}\le\frac{1}{64xyz}\)

\(\Rightarrow\frac{9}{4}\le3\sqrt[3]{\frac{1}{64xyz}}\)( 2 ) 

Từ ( 1 ) và ( 2 ) 

\(\Rightarrow M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{64xyz}}\ge\frac{9}{4}\)

Vậy  \(M_{min}=\frac{9}{4}\)

Trà My
31 tháng 3 2017 lúc 22:15

\(M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}=\frac{1}{16x}+\frac{4}{16y}+\frac{16}{16z}=\frac{1^2}{16x}+\frac{2^2}{16y}+\frac{4^2}{16z}\)

Áp dụng bất đẳng thức Cauchy Schawrz dạng Engel ta được:

\(M=\frac{1^2}{16x}+\frac{2^2}{16y}+\frac{4^2}{16z}\ge\frac{\left(1+2+4\right)^2}{16x+16y+16z}=\frac{7^2}{16\left(x+y+z\right)}=\frac{49}{16.1}=\frac{49}{16}\)

Dấu "=" xảy ra khi \(\frac{1}{16x}=\frac{2}{16y}=\frac{4}{16z}\). Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{1}{16x}=\frac{2}{16y}=\frac{4}{16z}=\frac{1+2+4}{16x+16y+16z}=\frac{7}{16\left(x+y+z\right)}=\frac{7}{16.1}=\frac{7}{16}\)

=>\(x=\frac{1}{7};y=\frac{2}{7};z=\frac{4}{7}\)

Vậy Mmin=49/16 khi \(x=\frac{1}{7};y=\frac{2}{7};z=\frac{4}{7}\)

thinh le
Xem chi tiết