1+1,2+3.3
Tính \(A=-\frac{19}{2^3.3^2.5}+\left(-3\frac{1}{2}\right)^2:1,2-\left(-1\frac{1}{3}\right)^3:\frac{5}{6}\)
Tính : \(A=\frac{2,5-4\left(\frac{5}{2}-1,2\right)+\frac{3}{8}}{4\left(\frac{5}{2}-1,2\right)-\frac{3}{5}:\frac{2}{5}}-\frac{55}{148}\)
Rút gọn \(B=\frac{3^9-2^3.3^7+2^{10}.3^2-2^{13}}{3^{10}-2^2.3^7+2^{10}.3^3-2^{12}}\)
giải giúp mk nha
2. Chứng minh rằng : 3.3/20.23+3.3/23.26+....+3.3/77.80<1
\(\dfrac{3.3}{20.23}+\dfrac{3.3}{23.26}+...+\dfrac{3.3}{77.80}\)
\(=3\left(\dfrac{3}{20.23}+\dfrac{3}{23.26}+...+\dfrac{3}{77.80}\right)\)
\(=3\left(\dfrac{1}{20}-\dfrac{1}{23}+\dfrac{1}{23}-\dfrac{1}{26}+...+\dfrac{1}{77}-\dfrac{1}{80}\right)\)
\(=3\left(\dfrac{1}{20}-\dfrac{1}{80}\right)\)
\(=3.\dfrac{3}{80}=\dfrac{9}{80}< 1\left(đpcm\right)\)
Vậy...
tính : A= 1/2.2+1/3.3+1/4.4+...+1/9.9
B=2/3.3+2/5.5+2/7.7+...+2/2007.2007
C=1/4.4+1/6.6+1/8.8+...+1/2006.2006
1/2.2+1/3.3+...+1/2017.2017
1+1 =TWO,2+5=SEVEN,3.3=?
Trả lời ;>..........................................................
2
7
9
Hk otot,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
k nhé
1/2.2+1/3.3+1/4.4+....+1/100.100<1
1/2.2 < 1/1.2
1/3.3 < 1/2.3
..................
1/100.100 < 1/99.100
=> <
Ta có: \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+....+\frac{1}{100.100}=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}\)
Vì \(\frac{1}{2^2}<\frac{1}{1.2}\)
\(\frac{1}{3^2}<\frac{1}{2.3}\)
\(\frac{1}{4^2}<\frac{1}{3.4}\)
.....
\(\frac{1}{100^2}<\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}<\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}<1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}<1\left(đpcm\right)\)
1/2.2 < 1/1.2
1/3.3 < 1/2.3
..................
1/100.100 < 1/99.100
=> <
1/3.3+1/4.4+1/5.5...+1/100.100<1/2 ( chứng minh)
\(< \dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=\dfrac{1}{2}-\dfrac{1}{100}< \dfrac{1}{2}\left(đpcm\right)\)
1/3.3+1/4.4+1/5.5+...+1/100.100<1/2.3+1/3.4+1/4.5+...+1/99.100=A
A=1/2-1/3+1/3-1/4+1/4-1/5+...+1/99-1/100=1/2-1/100<1/2
=>1/3.3+1/4.4+1/5.5+...+1/100.100<1/2
3/4+2/3+3/4+1/3+1/3.3/1