Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen Duong
Xem chi tiết
tran vinh
31 tháng 7 2021 lúc 18:40

1.ta có: 8p-1 là số nguyên tố (đề bài)

8p luôn luôn là hợp số 

ta có: (8p-1)8p(8p+1) chia hết cho 3 

từ cả 3 điều kiện trên ta có: 8p+1 chia hết cho 3 suy ra 8p+1 là hs

Khách vãng lai đã xóa
Đậu Hoàng Nhật Minh
Xem chi tiết
forever young
3 tháng 4 2018 lúc 19:44

Vì pq +11 là số nguyên tố \(\Rightarrow\)pq +11 là số lẻ \(\Rightarrow\)pq là số chẵn \(\Rightarrow\)\(⋮\)2 hoặc q\(⋮\)2

p\(⋮\)2 mà q là số nguyên tố \(\Rightarrow\)q = 2 

thay p = 2 vào 7p +q ta đc 14+ q mà 7p +q là số nguyên tố \(\Rightarrow\)14+q là số nguyên tố

 \(\Rightarrow\)14+q ko chia hết cho 3 mà 14 chia 3 dư 2 \(\Rightarrow\)\(⋮\)3 hoặc q chia 3 dư 2

q chia 3 dư 2 \(\Rightarrow\)q có dạng 3k+2 (k là số tự nhiên)

thay q=3k+2;p=2 vào pq +11 ta đc

2(3k+2)+11=6k+4+11=6k+15=3(2k+5)\(⋮\)3 và 3(2k+5) > 3 (KTM vì pq +11 là số nguyên tố)

\(⋮\)3\(\Rightarrow\)q có dạng 3a(a là số tự nhiên) 

mà q là số nguyên tố \(\Rightarrow\)q =1

2. chứng minh tương tự

đúng thì k nha

Đậu Hoàng Nhật Minh
19 tháng 3 2018 lúc 11:21

Gúp mình nhanh lẹ nhá AI NHANH K CHO

Nguyễn Thị Thúy
Xem chi tiết
crewmate
Xem chi tiết
Đoàn Đức Hà
7 tháng 1 2021 lúc 9:59

Nếu cả \(p,q\)đều là số lẻ thì \(pq+11\)là số chẵn nên không thể là số nguyên tố. 

Nếu \(p=2\):

\(q+14\)\(2q+11\)đều là số nguyên tố. 

Với \(q=3\)thỏa mãn. 

Với \(q>3\)thì \(q=3n+1\)hoặc \(q=3n+2\).

\(q=3n+1\)thì \(q+14=3n+15⋮3\).

\(q=3n+2\)thì \(2q+11=2\left(3n+2\right)+11=6n+15⋮3\).

Nếu \(q=2\):

\(7p+2\)\(2p+11\)đều là số nguyên tố. 

Xét các trường hợp của \(p\)tương tự trường hợp \(p=2\).

Kết luận: có các trường hợp thỏa mãn là \(\left(p,q\right)\in\left\{\left(2,3\right),\left(3,2\right)\right\}\)

Khách vãng lai đã xóa
Trần Ngọc Lê Anh
Xem chi tiết
Bùi Kiều Trang
Xem chi tiết
đặng quốc khánh
25 tháng 12 2018 lúc 21:53

À chờ mình xíu

đặng quốc khánh
25 tháng 12 2018 lúc 21:58

Vi pq + 11 là số nguyên tố => Lẻ và 11 là số lẻ => pq chẵn => p hoặc q bằng 2 

Nếu p = 2 

=> 7p + q = 7.2 + q = 14 + q 

q sẽ có 3 dạng là : 3k ; 3k+1;3k+2 

Nếu q = 3k => p = 3 => 7p + q = 17 ; pq + 11 = 17 là số nguyên tố

       q=3k + 1 => 7p + q = 3k + 15 chia hết cho 3 là số nguyên tố 

       q = 3k + 2 =>pq + 11 = 6k + 15 chia hết cho 3 là số nguyên tố 

Vậy q = 3 ; p = 2 

VÀ TH q = 2 bn tự xét nha 

Nguyễn Phương Anh
Xem chi tiết
Lê Văn Thịnh
Xem chi tiết
GoKu Đại Chiến Super Man
Xem chi tiết
phong
10 tháng 1 lúc 20:37

Vi pq + 11 là số nguyên tố => Lẻ và 11 là số lẻ => pq chẵn => p hoặc q bằng 2 

Nếu p = 2 

=> 7p + q = 7.2 + q = 14 + q 

q sẽ có 3 dạng là : 3k ; 3k+1;3k+2 

Nếu q = 3k => p = 3 => 7p + q = 17 ; pq + 11 = 17 là số nguyên tố

       q=3k + 1 => 7p + q = 3k + 15 chia hết cho 3 là số nguyên tố 

       q = 3k + 2 =>pq + 11 = 6k + 15 chia hết cho 3 là số nguyên tố 

Vậy q = 3 ; p = 2 

VÀ TH q = 2 bn tự xét nha