cho A=1/10+1/11+1/12+...+1/99+1/100
Chứng tỏ A>1
Cho tổng A=1/10+1/11+1/12+....+1/99+1/100.Chứng tỏ rằng A>1
1/10+1/11+…+1/19 > 1/20+1/20+…+1/20 = 10/20 = 1/2
1/20+1/21+…+1/29 > 1/30+1/30+…+1/30 = 10/30 = 1/3
1/30+1/31+…+1/39 > 1/40+1/40+…+1/40 = 10/40 = 1/4
=> A>1
1/10+1/11+…+1/19 > 1/20+1/20+…+1/20 = 10/20 = 1/2
1/20+1/21+…+1/29 > 1/30+1/30+…+1/30 = 10/30 = 1/3
1/30+1/31+…+1/39 > 1/40+1/40+…+1/40 = 10/40 = 1/4
=> 1/10+1/11+…+1/39 > 1/2+1/3+1/4 = 13/12 > 1
1/10+1/11+…+1/39 > 1/2+1/3+1/4 = 13/12 > 1
Cho A=1/10+1/11+1/12+...+1/99+1/100
Chứng tỏ A>1
Cho tổng A=1/10+1/11+1/12+...+1/99+1/100.
Chứng tỏ rằng A > 1.
Chỉ cần 30 số hạng đầu đã lớn hơn 1.
1/10+1/11+…+1/19 > 1/20+1/20+…+1/20 = 10/20 = 1/2
1/20+1/21+…+1/29 > 1/30+1/30+…+1/30 = 10/30 = 1/3
1/30+1/31+…+1/39 > 1/40+1/40+…+1/40 = 10/40 = 1/4
=>
1/10+1/11+…+1/39 > 1/2+1/3+1/4 = 13/12 > 1
Bài 6
b) Cho S = 1/50 + 1/51 + 1/52 + ... + 1/99
Chứng tỏ S > 5/6
c) Cho A = 1/10 + 1/11 + 1/12 + ... + 1/99 + 1/100
Chứng tỏ A > 1
@Miyuki Misaki, @Nguyễn Trúc Giang, @Nguyễn Lê Phước Thịnh, @White Hold
a, Ta có : S = \(\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}\)
⇔ S = \(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}\right)\)
⇔ \(S=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{98}\right)\)
⇔\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\) ( 99 số hạng)
⇔ S = \(\left(1-\frac{1}{2}+\frac{1}{3}\right)-\left(\frac{1}{4}-\frac{1}{5}\right)-\left(\frac{1}{6}-\frac{1}{7}\right)-...-\left(\frac{1}{98}-\frac{1}{99}\right)\)
⇔ S = \(\frac{5}{6}-\left(\frac{1}{4}-\frac{1}{5}\right)-\left(\frac{1}{6}-\frac{1}{7}\right)-...-\left(\frac{1}{98}-\frac{1}{99}\right)\)
Mà ta có \(\left(\frac{1}{4}-\frac{1}{5}\right)-\left(\frac{1}{6}-\frac{1}{7}\right)-...-\left(\frac{1}{98}-\frac{1}{99}\right)\) < 0
⇔ \(-\)\(\left(\frac{1}{4}-\frac{1}{5}\right)-\left(\frac{1}{6}-\frac{1}{7}\right)-...-\left(\frac{1}{98}-\frac{1}{99}\right)\) > 0
Như vậy ta được S > \(\frac{5}{6}\) đpcm
b, \(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+..+\frac{1}{99}+\frac{1}{100}\) ( 91 số hạng)
Ta có \(\frac{1}{11}>\frac{1}{100};\frac{1}{12}>\frac{1}{100};..;\frac{1}{99}>\frac{1}{100}\)
⇒ \(A>\frac{1}{10}+\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\) (90 số hạng 100)
⇒ A \(>\frac{10}{100}+90.\frac{1}{100}\)
⇒ A > \(\frac{10}{100}+\frac{90}{100}\)
⇒ A > \(\frac{100}{100}=1\)
Vậy ...
Cho tổng A = 1 / 10 + 1 / 11 + 1 / 12 + ... + 1 / 99 + 1 / 100
Chứng tỏ rằng A > 1
A = 1 / 10 + ( 1 / 11 + 1 / 12 + ... + 1 / 99 + 1 / 100 )
A = 1 / 10 + ( 1 / 11 + 1 / 12 + ... + 1 / 99 + 1 / 100 ) > 1 / 10 + ( 1 / 100 + 1 / 100 + ... + 1 / 100 )
= 1 / 10 + 90 / 100 = 1
Vậy A > 1
1/10+1/11+…+1/19 > 1/20+1/20+…+1/20 = 10/20 = 1/2
1/20+1/21+…+1/29 > 1/30+1/30+…+1/30 = 10/30 = 1/3
1/30+1/31+…+1/39 > 1/40+1/40+…+1/40 = 10/40 = 1/4
=>
1/10+1/11+…+1/39 > 1/2+1/3+1/4 = 13/12 > 1
đúng nhé
\(A=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\right)\)\(A=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\right)>\frac{1}{10}+\left(\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\right)=\frac{1}{10}+\frac{90}{100}=1\)
Vậy A > 1
A=1/10+1/11+1/12+...+1/99+1/100. Chứng tỏ A>1
1. Cho A = 1/2 . 3/4 . 5/6 .....99/100
Chứng minh A^2 < 1/101
A=12.34.56...99100
⇒A<23.45.67...100101
⇒A2<23.45.67...100101.12.34.56...99100
⇒A2<1101<1100=1102
⇔A<1102
A=12.34.56...99100
⇒A<23.45.67...100101
⇒A2<23.45.67...100101.12.34.56...99100
⇒A2<1101<1100=1102
⇔A^2< 1/101
1. Cho A = 1/2 . 3/4 . 5/6 .....99/100
Chứng minh A^2 < 1/101
cho A=1/11+1/12+1/13+1/14+...+1/50
so sánh A với 1/2
cho B=1/50+1/51+1/52+...+1/98+1/99
chứng minh rằng b <1/2
cho C=1/10+1/11+1/12+...+1/99+1/100
chứng tỏ C >1
a, Ta có: \(A=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{50}=\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}\right)\)
Nhận xét: \(\frac{1}{11}+\frac{1}{12}+....+\frac{1}{30}>\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}=\frac{20}{30}=\frac{2}{3}\)
\(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=\frac{20}{60}=\frac{1}{3}\)
\(\Rightarrow A>\frac{2}{3}+\frac{1}{3}=1>\frac{1}{2}\)
Vậy A > 1/2
b, Ta có: \(\frac{1}{50}>\frac{1}{100};\frac{1}{51}>\frac{1}{100};........;\frac{1}{99}>\frac{1}{100}\)
\(\Rightarrow B>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{50}{100}=\frac{1}{2}\)
Vậy B > 1/2
c, Ta có: \(C=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\right)\)
Nhận xét: \(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{90}{100}=\frac{9}{10}\)
\(\Rightarrow C>\frac{1}{10}+\frac{9}{10}=\frac{10}{10}=1\)
Vậy C > 1