tìm a b c biết abc = 1/5 x dad
a,tìm số tự nhiên x để A=2021:(11-x) để x có giá trị lớn nhất.Tìm giá trị lớn nhất đó. b, tìm các chữ số a,b,c,d biết rằng :abc ×5=dad
Em xem lại đề nhá .
a, Để \(A=2021:\left(11-x\right)\) có giá trị lớn nhất :
Khi và chỉ khi : 11-x có giá trị nhỏ nhất
Mà x là số tự nhiên nên không thể là các số thập phân ; ........
Để: 11-x có giá trị nhỏ nhất . Khi và chỉ khi x=11 . Nhưng điều này là không thể vì trong phép chia không chia được cho 0 .
Nên để 11-x có giá trị nhỏ nhất . khi và chỉ khi x = 10
Vậy khi x=10 thì \(A\text{=}2021:\left(11-x\right)\) có giá trị lớn nhất
b, \(\overline{abc}\times5=\overline{dad}\)
Ta có : \(c\times5⋮5\)
\(\Rightarrow d⋮5\)
Mà \(d\ne0\)
\(\Rightarrow d\text{=}5\)
Ta có : \(a\times5\le5\) ( d=5)
\(\Rightarrow a\text{=}1\)
Ta có : \(\overline{1bc}\times5=515\)
\(\Rightarrow\overline{1bc}=515:5\)
\(\Rightarrow\overline{1bc}=103\)
Do đó : khi a=1;b=0;c=3;d=d thì : \(\overline{abc}\times5=\overline{dad}\)
a Để A lớn nhất ta có a =2021
A=2021 :1
A=2021:(11-10)
=> x =10
b Để dad chia hết cho 5 thì số cuối là 0 hoặc 5
Mà 0 thì ko thể là số hàng trăm => d = 5
Để a ×5 là 5 thì a có thể là 1 vì a là hàng trăm
Ta có 1bc ×5 = 515
515÷5 =103
=> b=0 a =1
c=3 d=5
tìm a,b,c,d
biết abc=dad:5
Tìm các chữ số a,,b,c biết;
a.] abc. 5= dad
b] abc+ba= dcca
Trả lời giúp mình nhé
Thay các chữ a,b,c,d bằng chữ số thích hợp biết abc x 5 =dad
abc x 5 =dad
(a.100+bc).5=dad
a.500+bc.5=dad(vì dad chỉ có 3 chữ số)
a=1;Thay vào ta có:
500+bc.5=d1d
Vì d=số tận cùng của c.5d=5 hoặc 0 mà d không thể bằng 0 vì không có trường hợp số có ba chữ số là 010.
Vậy d=5
Thay vào ta có:500+bc.5=515
bc.5=15bc=03
a=1;b=0;c=3.
Tìm abc biết
abc x 5 = dad
abc gạch đầu
tìm các chữ số a,b,c,d biết rằng /abc x5= /dad
Ta có :
\(c\times5⋮5\)
\(\Rightarrow d⋮5\)
Mà \(d\ne0\) ( d còn là chữ số hàng trăm )
Do đó : \(d=5\)
Ta có : \(a\times5=d\)
\(\Rightarrow a=1\)
Ta có : \(\overline{1bc}\times5=515\)
\(\Rightarrow\overline{1bc}=515:5=103\)
Vậy với : \(a\text{=}1;b\text{=}0;c\text{=}3;d\text{=}5\) thì \(\overline{abc}\times5\text{=}\overline{dad}\)
Bài 1: Tìm số abc biết abc x 5 = dad
Bài 2:Có bao nhiêu số tự nhiên có hai chữ số mà chữ số hàng chục lớn hơn chữ số hàng đơn vị?
Bài 3:Cho số ab1 chia hết cho 7 và a + b = 6. Tìm số đó.
Bài 1: \(\overline{abc}\) \(\times\) 5 = \(\overline{dad}\) ⇒ \(\overline{dad}\) ⋮ 5 ⇒ \(d\) = 0; 5
Vì số 0 không thể đứng đầu nên \(d\) = 5
Thay \(d=5\) vào biểu thức \(\overline{abc}\) \(\times\) 5 = \(dad\) ta có:
\(\overline{abc}\) \(\times\) 5 = \(\overline{5a5}\) . Nếu \(a\) ≥ 2 ⇒ \(\overline{abc}\) \(\times\) 5 ≥ 200 \(\times\) 5 = 1000 (loại)
Vậy \(a\) = 1; Thay \(a\) = 1 vào biểu thức : \(\overline{abc}\) \(\times\) 5 = \(\overline{5a5}\) ta có:
\(\overline{1bc}\) \(\times\) 5 = 515 ⇒ \(\overline{1bc}\) = 515 : 5 ⇒ \(\overline{1bc}\) = 103
Vậy \(\overline{abc}\) = 103
Số có hai chữ số mà chữ số hàng chục lớn hơn chữ số hàng đơn vị là các số có dạng:
\(\overline{9a}\); \(\overline{8b}\); \(\overline{7c}\); \(\overline{6d}\); \(\overline{5e}\); \(\overline{4f}\); \(\overline{3g}\); \(\overline{2h}\); \(\overline{1k}\)
Trong đó \(a;b;c;d;e;f;g;h;k\) lần lượt có số cách chọn là:
9; 8; 7; 6; 5; 4; 3; 2; 1
Số các số có 2 chữ số mà chữ số hàng chục lớn hơn chữ số hàng đon vị là:
9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 45
Đáp số: 45 số
Bài 3:
\(\overline{ab1}\) = \(a\times\) 100 + \(b\) \(\times\) 10 + 1 = \(a\times98\) + \(a\times\)2 + \(b\times7\) + \(b\times3\) + 1
\(\overline{ab1}\) \(⋮\) 7 ⇒ \(a\times\) 2 + \(b\) \(\times\) 3 + 1 ⋮ 7 ⇒ (\(a\)+ \(b\)) \(\times\) 2 + \(b\) + 1 \(⋮\) 7
⇒ 6 \(\times\) 2 + \(b\) + 1 ⋮ 7 ⇒ 12 + \(b\) + 1 \(⋮\) 7 ⇒ 13 + \(b\) ⋮ 7 ⇒ \(b\) = 1; 8
nếu \(b\) = 1 ⇒ \(a\) = 6 - 1 = 5 Số cần tìm là: 511
Nếu \(b\) = 8 ⇒ a + b > 6 ( loại)
Vậy Số cần tìm là: 511
Tìm số abc biết abc*5=dad
Abc = dad:5
Dad = abc x 5
abc là số có 3 cs x 5 dc số có 3 cs nên a = 1; 5 x c không thể tận cùng là 0 nên d = 5.
=> 515 = 1bc x 5
1bc = 103
tìm số abc biết abc *5=dad
Abc = dad:5
Dad = abc x 5
abc là số có 3 cs x 5 dc số có 3 cs nên a = 1; 5 x c không thể tận cùng là 0 nên d = 5.
=> 515 = 1bc x 5
1bc = 103