Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Phương Trang
Xem chi tiết
zzxxxzz
6 tháng 3 2016 lúc 16:46

ta co:a.a+c.c​​

tuan linh dep trai
6 tháng 3 2016 lúc 16:58

CHỮ XẤU NHƯ MA ẤY

Han Sara
Xem chi tiết
Suu ARMY
30 tháng 6 2018 lúc 11:24

\(\frac{a^2\cdot c^2}{c^2\cdot b^2}=\frac{a}{b}\)

Ta thấy trong phân số thứ nhất thì cả tử và mẫu đều có c2 nên ta lược bỏ thì sẽ được :

\(\frac{a^2}{b^2}=\frac{a}{b}\)( cái này hợp lí )

Cho nên ..................= ............

Tk mh nhé bn , mơn nhìu !!!!

~ HOK TỐT ~

Incursion_03
Xem chi tiết
Anna Taylor
14 tháng 12 2018 lúc 21:53

KUDO NÈO CHỨ

gọi vại nhột nhiều ng lắm

Incursion_03
15 tháng 12 2018 lúc 19:40

Giải hộ !

Đặt \(A=\frac{\frac{1}{2}c+ab}{a+b}+\frac{\frac{1}{2}a+bc}{b+c}+\frac{\frac{1}{2}b+ac}{a+c}\)

          \(=\frac{\left(a+b+c\right)c+ab}{a+b}+\frac{\left(a+b+c\right)a+bc}{b+c}+\frac{\left(a+b+c\right)b+ac}{a+c}\)

           \(=\frac{ac+bc+c^2+ab}{a+b}+\frac{a^2+ab+ac+bc}{b+c}+\frac{ab+b^2+bc+ac}{a+c}\)

            \(=\frac{\left(a+c\right)\left(b+c\right)}{a+b}+\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}\)

Áp dụng bđt Cô-si cho 2 số dương :

\(\frac{\left(a+c\right)\left(b+c\right)}{a+b}+\frac{\left(a+b\right)\left(a+c\right)}{b+c}\ge2\sqrt{\frac{\left(a+c\right)\left(b+c\right)\left(a+b\right)\left(a+c\right)}{\left(a+b\right)\left(b+c\right)}}\)

                                                                                 \(=2\sqrt{\left(a+c\right)^2}\)

                                                                                  \(=2\left(a+c\right)\)

C/m tương tự :

\(\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}\ge2\left(a+b\right)\)

\(\frac{\left(a+b\right)\left(b+c\right)}{a+c}+\frac{\left(a+c\right)\left(b+c\right)}{a+b}\ge2\left(b+c\right)\)

Cộng từng vế của 3 bđt trên lại ta được :

\(2A\ge2\left(a+b+b+c+c+a\right)\)

\(\Leftrightarrow2A\ge4\left(a+b+c\right)\)

\(\Leftrightarrow A\ge2\left(a+b+c\right)=2.\frac{1}{2}=1\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b=c\\a+b+c=\frac{1}{2}\end{cases}\Leftrightarrow a=b=c=\frac{1}{6}}\)

Vậy .............

Phạm Nguyễn Hùng Nguyên
Xem chi tiết
Doraemon
Xem chi tiết
Darlingg🥝
8 tháng 12 2019 lúc 9:36

\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\Rightarrow\frac{1}{c}.2=\frac{a}{ab}+\frac{b}{ab}\)

\(\Rightarrow2c=\frac{a+b}{ab}\)

\(\Rightarrow2ab=\left(a+b\right)c\)

\(\Rightarrow ab+ab=ac+bc\)

\(\Rightarrow ab-bc=ac-bc\Rightarrow b.\left(a-c\right)=a.\left(c-b\right)\)

\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\)

với a,b,c khác 0 và b khác c

đpcm.

Khách vãng lai đã xóa
phùng Thị Thu Hải
Xem chi tiết
APTX 4869
Xem chi tiết
Vũ Tiến Manh
11 tháng 10 2019 lúc 9:06

A B C D M N c b a

Kẻ BM và CN vuông góc với AD

a)  AC.sin\(\frac{A}{2}\)=CN \(\le\) CD ; AB.sin\(\frac{A}{2}\)=BM \(\le\) BD 

=> (AC+AB)sin\(\frac{A}{2}\)\(\le\) CD+BD = BC hay (b+c)sin\(\frac{A}{2}\)\(\le\)a <=> sin\(\frac{A}{2}\le\frac{a}{b+c}\)

dấu '=' xảy ra khi M,N, D trùng nhau hay tam giác ABC cân ở A

b) làm tương tự ta có sin\(\frac{B}{2}\le\frac{b}{a+c}\); sin\(\frac{C}{2}\le\frac{c}{a+b}\)

=> sin\(\frac{A}{2}.sin\frac{B}{2}.sin\frac{C}{2}\le\frac{a.b.c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)  (1)

mà (a+b)(b+c)(c+a) \(\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}\)=8a.b.c => (1) \(\le\frac{1}{8}\)

dấu '=' khi a=b=c hay tam giác ABC là tam giác đều

c) xét 2 tam giác CND và tam giác BMD có CN // BM ( đều vuông góc với AD) nên \(\widehat{NCD}=\widehat{MBD}\); lại có \(\widehat{NDC}=\widehat{BDM}\)

=> là 2 tam giác đồng dạng => \(\frac{DN}{DM}=\frac{NC}{MB}=\frac{AC.sin\frac{A}{2}}{AB.sin\frac{A}{2}}=\frac{b}{c}=>DN=DM.\frac{b}{c}\)

AD = AM+MD => \(\frac{b}{c}AD=\frac{b}{c}AM+\frac{b}{c}MD\)

AD= AN-ND

=>cộng vế theo vế ta được  AD(\(\frac{b}{c}+1\)) = \(\frac{b}{c}\)AM+\(\frac{b}{c}MD\)+ AN - ND =  \(\frac{b}{c}AM+AN\)\(\frac{b}{c}ABcos\frac{A}{2}+ACcos\frac{A}{2}\)=\(\frac{b}{c}.c.cos\frac{A}{2}+bcos\frac{A}{2}\)= 2b.\(cos\frac{A}{2}\)

=> AD(\(\frac{b+c}{c}\)) = 2b\(cos\frac{A}{2}\) <=> AD= \(\frac{2bc.cos\frac{A}{2}}{b+c}\)

Ngoc An Pham
Xem chi tiết
Nguyễn Ngọc Anh Minh
26 tháng 7 2017 lúc 15:13

\(\frac{a-b}{b-c}=\frac{c-d}{d-a}=\frac{a-b+c-d}{b-c+d-a}=\frac{a-b+c-d}{-\left(a-b+c-d\right)}=-1\)

\(\Rightarrow\frac{a-b}{b-c}=-1\Rightarrow a-b=c-b\Rightarrow a=c\)

Tiến Nguyễn Minh
Xem chi tiết
Vũ Tiến Manh
21 tháng 10 2019 lúc 22:19

1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)

\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\)  (1) 

áp dụng (x2 +y2 +z2)(m2+n2+p2\(\ge\left(xm+yn+zp\right)^2\)

(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\)   <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\)  ( vậy (1) đúng)

dấu '=' khi a=b=c

Khách vãng lai đã xóa
HD Film
21 tháng 10 2019 lúc 22:26

4b, \(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}=1-\frac{ab^2}{a^2+b^2}+1-\frac{bc^2}{b^2+c^2}+1-\frac{ca^2}{a^2+c^2}\)

\(\ge3-\frac{ab^2}{2ab}-\frac{bc^2}{2bc}-\frac{ca^2}{2ac}=3-\frac{\left(a+b+c\right)}{2}=\frac{3}{2}\)

Khách vãng lai đã xóa
HD Film
21 tháng 10 2019 lúc 22:35

4c, 

\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}=a+b+c-\frac{b^2}{b^2+1}-\frac{c^2}{c^2+1}-\frac{a^2}{a^2+1}+3--\frac{b^2}{b^2+1}-\frac{c^2}{c^2+1}-\frac{a^2}{a^2+1}\)\(\ge6-2\cdot\frac{\left(a+b+c\right)}{2}=3\)

Khách vãng lai đã xóa