giúp mình với
tìm giá trị nhỏ nhất
A=\(\frac{\left(m+1\right)^2+m}{\left(m+1\right)^2}\)
cho biểu thức \(M=\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right).\left(x^4+\frac{1-x^4}{1+x^2}\right)\)
a) rút gọn biểu thức
b) tìm giá trị nhỏ nhất của M
làm ơn giúp mình với
Cho biểu thức: \(M=\left(\frac{\left(a-1\right)^2}{31+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right):\frac{a^3+4a}{4a^2}\)
a) Rút gọn M
b) Tìm a để M > 0
c) Tìm giá trị của a để biểu thức M đạt giá trị lớn nhất. Tìm giá trị nhỏ nhất đó
Xét biểu thức A=\(\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right)\left(x^4+\frac{1-x^4}{1+x^2}\right)\\ \)
a) Rút gọn M
b)Tìm x để M đạt giá trị nhỏ nhất và tìm giá trị nhỏ nhất đó
a
\(ĐKXĐ:x\in R\)
\(A=\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right)\left(x^4+\frac{1-x^4}{1+x^2}\right)\)
\(A=\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right)\left(x^4-x^2+1\right)\)
\(=\frac{\left(x^2-1\right)\left(x^4-x^2+1\right)}{x^4-x^2+1}-\frac{x^4-x^2+1}{x^2+1}\)
\(=x^2-1-\frac{x^4-x^2+1}{x^2+1}\)
\(=-1+\frac{x^4+x^2-x^4+x^2+1}{x^2+1}\)
\(=\frac{2x^2+1}{x^2+1}-1=\frac{2x^2+1-x^2-1}{x^2+1}=\frac{x^2}{x^2+1}\)
b
Xét \(x>0\Rightarrow M>0\)
Xét \(x=0\Rightarrow M=0\)
Xét \(x< 0\Rightarrow M>0\)
Vậy \(M_{min}=0\) tại \(x=0\)
\(\sqrt{\left(\frac{m^2+4m+3}{2}+2\left(m+1\right)^2\right)^2}\)
tìm giá trị lớn nhất của biểu thức
ae giúp mình với mai nộp rồi
tìm giá trị nhỏ nhất của biểu thucM ,biết
M=\(\left(1+a\right)\left(1+\frac{1}{b}\right)+\left(1+b\right)\left(1+\frac{1}{a}\right)\)) với a>0,b>0 va \(^{a^{2+}b^{2=1}}\)
Ta có
\(M=\left(1+a\right)\left(1+\frac{1}{b}\right)+\left(1+b\right)\left(1+\frac{1}{a}\right)=2+\frac{a}{b}+\frac{b}{a}+a+b+\frac{1}{a}+\frac{1}{b}\)
\(\ge2+2+a+b+\frac{4}{a+b}\)
\(=4+a+b+\frac{2}{a+b}+\frac{2}{a+b}\)
\(\ge4+2\sqrt{\left(a+b\right).\frac{2}{\left(a+b\right)}}+\frac{2}{\sqrt{2\left(a^2+b^2\right)}}\)
\(=4+2\sqrt{2}+\sqrt{2}=4+3\sqrt{2}\)
Tìm giá trị của x để biểu thức M=\(\left(2x+5\right)^2+2x\left(3x-4\right)-\left(x^2+22\right)\) đạt giá trị nhỏ nhất và giá trị nhỏ nhất bằng bao nhiêu?
Các bạn giúp mình với
= \(4x^2\)+\(20x\)+\(25\)+\(6x^2\)- \(8x\)- \(x^2\)-\(22\)
=\(9x^2\)+\(12x\)+\(3\)
=\(9x^2\)+\(12x\)+\(3\)
=\(9x^2\)+\(12x\)+\(4\)-\(1\)
=(\(3x\)+\(2\))2-\(1\)
vì (\(3x\)+\(2\))2 >-0
=>.................-\(1\)>-(-1)
(>- là > hoặc =)
=> GTNN của M= -1 khi và chỉ khi \(3x\)+\(2\)=\(0\)
..................................
Cho 1 < x < 2. Tìm giá trị nhỏ nhất của biểu thức: \(M=\frac{1}{\left(x-1\right)\left(2-x\right)}+\frac{1}{\left(x-1\right)^2}+\frac{1}{\left(2-x^2\right)}\)
Sửa lại đề: \(M=\frac{1}{\left(x-1\right)\left(2-x\right)}+\frac{1}{\left(x-1\right)^2}+\frac{1}{\left(2-x\right)^2}\)
\(M=\frac{1}{\left(x-1\right)\left(2-x\right)}+\frac{1}{\left(x-1\right)^2}+\frac{1}{\left(2-x\right)^2}\ge3\sqrt[3]{\frac{1}{\left(x-1\right)^3\left(2-x\right)^3}}=\frac{3}{\left(x-1\right)\left(2-x\right)}\)
\(=\frac{-3}{x^2-3x+2}=\frac{-3}{\left(x^2-3x+\frac{9}{4}\right)-\frac{1}{4}}=\frac{-3}{\left(x-\frac{3}{2}\right)^2-\frac{1}{4}}\ge\frac{-3}{-\frac{1}{4}}=12\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\frac{1}{\left(x-1\right)^2}=\frac{1}{\left(x-1\right)\left(2-x\right)}=\frac{1}{\left(2-x\right)^2}\\\left(x-\frac{3}{2}\right)^2=0\end{cases}\Leftrightarrow x=\frac{3}{2}}\)
...
phương trình (1) \(x^2-2\left(m-1\right)x-\left(m+1\right)=0\)
tìm m để \(\left|x1-x2\right|\) có giá trị nhỏ nhất
\(\Delta'=\left(m-1\right)^2+m+1=m^2-m+2=\left(m-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0\) ; \(\forall m\)
\(\Rightarrow\) (1) luôn có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-\left(m+1\right)\end{matrix}\right.\)
Đặt \(A=\left|x_1-x_2\right|=\sqrt{\left(x_1-x_2\right)^2}=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)
\(A=\sqrt{4\left(m-1\right)^2+4\left(m+1\right)}=\sqrt{\left(2m-1\right)^2+7}\ge\sqrt{7}\)
\(A_{min}=\sqrt{7}\) khi \(2m-1=0\Leftrightarrow m=\dfrac{1}{2}\)
△'=m2-2m+1+m+1=m2-m+2=(m-\(\dfrac{1}{2}\))2+\(\dfrac{7}{4}\)
vì (m-\(\dfrac{1}{2}\))2≥0 với mọi m <=> \(\left(m-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}>0\)
=> phương trình luôn có 2 nghiệm x1 ,x2 ; áp dụng ĐL vi-ét ta đc:
\(\left\{{}\begin{matrix}x1+x2=2m-2\\x1\cdot x2=-m-1\end{matrix}\right.\)
ta có:\(\left|x1-x2\right|=\left(x1-x2\right)^2=\left(x1+x2\right)^2-4x1\cdot x2\)
=(2m-2)2-4*(-m-1)=4m2-8m+4+4m+4=4m2-4m+8=(2m-1)2+7
vì(2m-1)2≥0 vơi mọi m nên (2m-1)2+7≥7, phương trình này đạt GTNN khi 2m-1=0 <=> m=1/2
Cho biểu thức M=\(\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]\) \(:\frac{a^3+4a}{4a^2}\)
a) Rút gọn M
b) tìm a để M=0
c) Tìm a để M đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó
a) \(a\ne0;a\ne1\)
\(\Leftrightarrow M=\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}\)
\(=\left[\frac{\left(a-1\right)^2}{a^2+a+1}-\frac{1-2a^2+4a}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{1}{a-1}\right]\cdot\frac{4a^2}{a\left(a^2+4\right)}\)
\(=\frac{\left(a-1\right)^3-1+2a^2-4a+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a}{a^2+4}\)
\(=\frac{a^3-1}{a^3-1}\cdot\frac{4a}{a^2+4}=\frac{4a}{a^2+4}\)
Vậy \(M=\frac{4a}{a^2+4}\left(a\ne0;a\ne1\right)\)
b) \(M=\frac{4a}{a^2+4}\left(a\ne0;a\ne1\right)\)
M>0 khi 4a>0 => a>0
Kết hợp với ĐKXĐ
Vậy M>0 khi a>0 và a\(\ne\)1
c) \(M=\frac{4a}{a^2+4}\left(a\ne0;a\ne1\right)\)
\(M=\frac{4a}{a^2+4}=\frac{\left(a^2+4\right)-\left(a^2-4a+4\right)}{a^2+4}=1-\frac{\left(a-2\right)^2}{a^2+4}\)
Vì \(\frac{\left(a-2\right)^2}{a^2+4}\ge0\forall a\)nên \(1-\frac{\left(a-2\right)^2}{a^2+4}\le1\forall a\)
Dấu "=" <=> \(\frac{\left(a-2\right)^2}{a^2+4}=0\)\(\Leftrightarrow a=2\)
Vậy \(Max_M=1\)khi a=2