cho tổng A=1/10+1/11+1/11+1/12+...+1/99+1/100
chứng tỏ A>1
Cho tổng:
\(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\)
Chứng tỏ rằng \(A>1\)
Câu hỏi của Thăng Phạm - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo bài bạn làm nhé!
\(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\)
\(A=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\right)>\frac{1}{10}+\left(\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\right)\)
\(A=\frac{1}{10}+\frac{99}{100}>1\)
=> A > 1
1.Tính tổng
A=0-1+2-3+4-5+6-7+.........+2017-2018
B=1-3+5-7+9-11+....+2005-2007
C=1+2+3-4-5-6+7+8+9-10-11-12+.....+97+98+99-100-101-102
A = 0-1 + 2-3 + 4-5 +...+ 2017-2018
=> A = (-1) + (-1) + (-1) +...+ (-1) (Có 1009 số hạng)
=> A = 1009.(-1)
=> A = -1009
B = 1-3+5-7+ 9-11+....+2005-2007
=> B = (-2) + (-2) +(-2) +...+ (-2) (Có 502 số hạng)
=> B = 502.(-2)
=> B = -1004
C=1+2+3-4-5-6+7+8+9-10-11-12+.....+97+98+99-100-101-102
=> C = (1+2+3-4-5-6)+...+(97+98+99-100-101-102) (có 17 cặp số)
=> C = (-9) + (-9) +...+ (-9) (có 17 số hạng)
=> C = (-9).17
=> C = -153
Tính : a 1/10×11 + 1/ 11×12 +1/12×13 + .... +1/99×100
b 1/ 1×3 + 1/ 3 ×5 +1/5×7 + .... + 1/97×99
cho tổng \(A=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+....+\frac{1}{99}+\frac{1}{100}\) . Chứng tỏ rằng A>1
cho A=1/10+1/11+1/12+...+1/99+1/100
Chứng tỏ A>1
Cho tổng A=1/10+1/11+1/12+....+1/99+1/100.Chứng tỏ rằng A>1
1/10+1/11+…+1/19 > 1/20+1/20+…+1/20 = 10/20 = 1/2
1/20+1/21+…+1/29 > 1/30+1/30+…+1/30 = 10/30 = 1/3
1/30+1/31+…+1/39 > 1/40+1/40+…+1/40 = 10/40 = 1/4
=> A>1
1/10+1/11+…+1/19 > 1/20+1/20+…+1/20 = 10/20 = 1/2
1/20+1/21+…+1/29 > 1/30+1/30+…+1/30 = 10/30 = 1/3
1/30+1/31+…+1/39 > 1/40+1/40+…+1/40 = 10/40 = 1/4
=> 1/10+1/11+…+1/39 > 1/2+1/3+1/4 = 13/12 > 1
1/10+1/11+…+1/39 > 1/2+1/3+1/4 = 13/12 > 1
Cho A=1/10+1/11+1/12+...+1/99+1/100
Chứng tỏ A>1
1) chứng tỏ tổng 41/90+ 31/72+ 21/40+ -11/45+ -1/36 lớn hơn 1
2) Cho S = 1/5 + 1/6 + ..... + 1/16 + 1/17 .chứng tỏ 1<S<2
cho A=1/11+1/12+1/13+1/14+...+1/50
so sánh A với 1/2
cho B=1/50+1/51+1/52+...+1/98+1/99
chứng minh rằng b <1/2
cho C=1/10+1/11+1/12+...+1/99+1/100
chứng tỏ C >1
a, Ta có: \(A=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{50}=\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}\right)\)
Nhận xét: \(\frac{1}{11}+\frac{1}{12}+....+\frac{1}{30}>\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}=\frac{20}{30}=\frac{2}{3}\)
\(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=\frac{20}{60}=\frac{1}{3}\)
\(\Rightarrow A>\frac{2}{3}+\frac{1}{3}=1>\frac{1}{2}\)
Vậy A > 1/2
b, Ta có: \(\frac{1}{50}>\frac{1}{100};\frac{1}{51}>\frac{1}{100};........;\frac{1}{99}>\frac{1}{100}\)
\(\Rightarrow B>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{50}{100}=\frac{1}{2}\)
Vậy B > 1/2
c, Ta có: \(C=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\right)\)
Nhận xét: \(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{90}{100}=\frac{9}{10}\)
\(\Rightarrow C>\frac{1}{10}+\frac{9}{10}=\frac{10}{10}=1\)
Vậy C > 1