cmr : không thể có các số nguyên lẻ a1,a2...a2009 thỏa mãn a12+a22+...+a20082=a20092
Cho dãy tỉ số: a1/a2=a2/a3=a3/a4=...=a2008/a2009
Cmr: a1/a2009=(a1+a2+a3+...+a2008/a2+a3+a4+...+a2009)^2008
cho 20 số nguyên khác 0 a1, a2 ,a3,...,a20 có các tính chất sau a1 là số dương, tổng 20 số đó là số âm. CMR a1*a14+a14*a12<a1*a12
Ta có a1 +a2+...+a20 <0
Lại có a2+a3+a4 >0;
a5 +a6+a7 >0;
a8+a9+a10>0;
a11+a12+a13>0;
a15+a16+a17>0;
a18 +a19+a20>0;
a1>0
=> a14<0;
Lại có a1+a2+a3 >0;
a4+a5+a6>0;
....
a10+a11+a12>0;
a15+a16+a17>0;
a18+a19+a20>0;
=> a13+a14<0;
mà a12+a13+a14>0;
=>a12>0;
=> a1.a12>0;
a1.a14+a14.a12<0;
=>a1.a14+a14.a12<a1.a12
Cho các số x và y có dạng: x = a 1 2 + b 1 và y = a 2 2 + b 2 , trong đó a 1 , a 2 , b 1 , b 2 là các số hữu tỉ. Chứng minh: x + y và x.y cũng có dạng a 2 + b với a và b là các số hữu tỉ
Ta có: x + y = ( a 1 2 + b 1 ) + ( a 2 2 + b 2 ) = ( a 1 + a 2 ) 2 + ( b 1 + b 2 )
Vì a 1 , a 2 , b 1 , b 2 là các số hữu tỉ nên a 1 + a 2 , b 1 + b 2 cũng là số hữu tỉ.
Lại có: xy = ( a 1 2 + b 1 )( a 2 2 + b 2 ) = 2 a 1 a 2 + a 1 b 2 2 + a 2 b 1 2 + b 1 b 2
= ( a 1 b 2 + a 2 b 1 ) 2 + (2 a 1 a 2 + b 1 b 2 )
Vì a 1 , a 2 , b 1 , b 2 là các số hữu tỉ nên a 1 b 2 + a 2 b 1 , a 1 a 2 + b 1 b 2 cũng là các số hữu tỉ.
Cho 20 số nguyên khác 0 : a1, a2, a3 ,...,a20 có các tính chất sau:
- a1 là số dương
-Tổng 3 số viết liền nhau bất kì là 1 số dương
-Tổng 20 số là số âm.
cmr : a1.a14 + a14.a12 < a1.a12
Câu hỏi của Vu Kim Ngan - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo nhé!
1,Cho 2000 số A1,A2,A3,...A2000 là các số TN thỏa mãn: 1/A1+1/A2+1/A3+....+1/A2000=1. CMR tồn tại ít nhất 1 số Ak là số chẵn
2,Gọi A1,A2,A3,...A100 là các số TN thỏa mãn: 1/A21+1/A22+....+1/A1002=199/100. CMR có ít nhất 2 số TN trong các số trên =nhau
3,Cho 2021 số nguyên dương A1,A2,....,A2021 thỏa mãn 1/A1+1/A2+1/A3+.....+1/A2021=1011. CMR ít nhất 2 trong đó = nhau
Giúp mình với nha!
Cho các số x và y có dạng: x = a 1 2 + b 1 và y = a 2 2 + b 2 , trong đó a 1 , a 2 , b 1 , b 2 là các số hữu tỉ. Chứng minh: x/y với y ≠ 0 cũng có dạng a 2 + b với a và b là các số hữu tỉ.
cho dãy tỉ số bằng nhau.
a1/a2=a2/a3=...=a2008/a2009.
CMR:a1/a2009=(a1+a2+a3+a4+...+a2008)/(a2+a3+a4+a5+...+a2009)
Cho 20 số nguyên dương a1,a2,...,a20có tính chất:
a1>0
Tổng của 3 số viết liền nhau bất kì là một số dương
Tổng 20 số đó là số âm
CMR: a1*a14+a14*a12<a1*a12
cho a1\a2=a2\a3=a3\a4=...=a2008\a2009. chứng minh a1\a2009=(a1+a2+....+a2008\a2+a3+....+a2009)2008 nhanh hộ mik nha
Đặt: \(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=...=\dfrac{a_{2008}}{a_{2009}}=t\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=...=\dfrac{a_{2008}}{a_{2009}}=\dfrac{a_1+a_2+a_3+...+a_{2008}}{a_2+a_3+...+a_{2009}}=t\)
Ta có: \(\left\{{}\begin{matrix}\left(\dfrac{a_1+a_2+...+a_{2008}}{a_2+a_3+...+a_{2009}}\right)^{2008}=t^{2008}\\\dfrac{a_1}{a_2}.\dfrac{a_2}{a_3}.\dfrac{a_3}{a_4}...\dfrac{a_{2008}}{a_{2009}}=t^{2008}=\dfrac{a_1}{a_{2009}}\end{matrix}\right.\Leftrightarrow\left(đpcm\right)\)
cho 2016 số nguyên dương a1 ;a2;a3;.....2016 thỏa mãn 1/a1+1/a2+...+1/a2016 cmr tồn tại ít nhất hai số bằng nhau