So sánh A với 1
A = 9/10 + 39/40 + 87/88 + 153/154 + 237/238 + 339/340
Tính tổng S và so sánh với 0,1 biết : S= 1/10+1/40+1/88+1/154+1/238+1/340
\(S=\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{184}+\frac{1}{238}+\frac{1}{340}=\frac{1}{3}\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}\right)\)
\(=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}\right)\)
\(=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{20}\right)=\frac{1}{3}.\frac{9}{20}=\frac{3}{20}>\frac{2}{20}=\frac{1}{10}=0,1\)
vậy S>0,1
a) Tính A=1/10+1/40+1/88+1/154+1/238+1/340
b) so sánh: 200410 + 20049 và 200510
a) A = 1/2.5 + 1/5.8 + 1/8.11 + 1/11.14 + 1/14.17 + 1/17.20
=> 3A = 1/2 - 1/5 + 1/5 - .... + 1/14 - 1/17 + 1/17 - 1/20
=> 3A = 1/2 - 1/20 = 9/20
=> A = 3/20
b) 200410 + 20049 = 20049(1+2004) = 20049 . 2005
200510 = 20059 . 2005
Do 20059 > 20049 nên 200410 + 20049 < 200510
Tính tổng S và so sánh với 0,1 biết S=1/10+1/40+1/88+1/154+1/238+1/340
S = \(\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{340}\)
S = \(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+\frac{1}{17.20}\)
S = \(\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+....+\frac{1}{17}-\frac{1}{20}\right)\)
S = \(\frac{1}{3}\left(\frac{1}{2}-\frac{1}{20}\right)=\frac{1}{3}.\frac{9}{20}\)
S = \(\frac{3}{20}\)
S = 0,15 > 0,1
S=\(\frac{3}{20}\)>0,1
li ke cho mình nha
Tính tổng S bằng cách hợp lý nhất S=9/10+39/40+87/88+153/154
thời gian đi là:
17h45'-12h10'-1h5'=4h30'=4,5h
quãng đường ab là:
4,5×43=193,5(km)
Đáp số:193km
A=1/10+1/40+1/88+1/154+1/238+1/340
Đặt \(A=\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{340}\)
=> \(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+\frac{1}{17.20}\) (dấu . có nghĩa là nhân)
=> \(3A=3\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+\frac{1}{17.20}\right)\)
\(=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}\)
\(=\frac{1}{2}-\frac{1}{20}\)
\(=\frac{9}{20}\)
Đây là kiến thức lớp 6 nhá =)) bạn mà có chỗ nào ko hiểu thì hỏi ng thầy cô giạy bạn ý
A = 1/10 + 1/40 + 1/88 + 1/154 + 1/238 + 1/340
B = 3/4 . 8/9 .15/16. ... 9999/10000
\(A=\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{340}\)
\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+\frac{1}{17.20}\)
\(3A=3.\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+\frac{1}{17.20}\right)\)
\(3A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}\)
\(3A=\frac{5-2}{2.5}+\frac{8-5}{5.8}+\frac{11-8}{8.11}+\frac{14-11}{11.14}+\frac{17-14}{14.17}+\frac{20-17}{17.20}\)
\(3A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}\)
\(3A=\frac{1}{2}-\frac{1}{20}\)
\(A=\left(\frac{1}{2}-\frac{1}{20}\right)\div3=\frac{9}{20}\div3=\frac{9}{20.3}=\frac{3}{20}\)
Vậy ................
\(B=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot....\cdot\frac{9999}{10000}\)
\(B=\frac{1.3}{2.2}\cdot\frac{2.4}{3.3}\cdot\frac{3.5}{4.4}\cdot...\cdot\frac{99.101}{100.100}\)
\(B=\frac{\left(1\cdot2\cdot3\cdot...\cdot99\right).\left(3\cdot4\cdot5\cdot...\cdot101\right)}{\left(2\cdot3\cdot4\cdot...\cdot100\right).\left(2\cdot3\cdot4\cdot...\cdot100\right)}\)
\(B=\frac{1\cdot2\cdot3\cdot..\cdot99}{2\cdot3\cdot4\cdot..\cdot100}\cdot\frac{3\cdot4\cdot5\cdot...\cdot101}{2\cdot3\cdot4\cdot...\cdot100}\)
\(B=\frac{1}{100}\cdot\frac{101}{2}=\frac{101}{200}\)
vậy......
A=1/2.5+1/5.8+1/8.11+1/11.14+1/14.17+1/17.20
A=1/3.(3/2.5+3/5.8+3/8.11+3/11.14+3/14.17+3/17.20)
A=1/3.(1/2-1/20)
=3/20
B=1.3/2.2+2.4/3.3+3.5/4.4+...+99.101/100.100
B=(1.2.3...99).(3.4.5...101)/(2.3.4...100).(2.3.4...100)
B=\(\frac{1.2....99}{2.3...100}\).\(\frac{3.4...101}{2.3...100}\)
B=1/100.101/2=101/200
A=1/10+1/40+1/88+1/154+1/238+1/340 (làm nhanh giúp mình nhé)
S = 1/10 + 1/40 + 1/88 + 1/154 + 1/238 + 1/340
1/10 + 1/40 + 1/88 + 1/154 + 1/238 + 1/340
\(\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{340}\)
\(=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+\frac{1}{11\cdot14}+\frac{1}{14\cdot17}+\frac{1}{17\cdot20}\)
\(=\frac{1}{3}\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}+\frac{3}{14\cdot17}+\frac{3}{17\cdot20}\right)\)
\(=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{17}-\frac{1}{20}\right)\)
\(=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{20}\right)\)
\(=\frac{1}{3}\cdot\frac{9}{20}\)
\(=\frac{3}{20}\)
A = 1/10 + 1/40 + 1/88 + 1/154 + 1/238 + 1/340
A = 1/2.5 + 1/5.8 + 1/8.11 + 1/11.14 + 1/14.17 + 1/17.20
3 A = 3/2.5 + 3/5.8 + 3/8.11 + ... + 3/17.20
3A = 1/2 - 1/5 + 1/5 - 1/8 + ... + 1/17 - 1/20
3A = 1/2 - 1/20
3A = 9/20
A = 9/20 : 2
1/10+1/40+1/88+1/154+1/238+1/340
=1/2.5+1/5.8+1/8.11+1/11.14+1/14.17+1/17.20
=1/2-1/5+1/5-1/8+1/8-...+1/17-1/20
=1/2-1/20
=9/20
k cho mình nha thanks bạn