Cho tổng A =1/10+1/11+...+1/99+1/100
Chứng tỏ A>1
Cho tổng A=1/10+1/11+1/12+....+1/99+1/100.Chứng tỏ rằng A>1
1/10+1/11+…+1/19 > 1/20+1/20+…+1/20 = 10/20 = 1/2
1/20+1/21+…+1/29 > 1/30+1/30+…+1/30 = 10/30 = 1/3
1/30+1/31+…+1/39 > 1/40+1/40+…+1/40 = 10/40 = 1/4
=> A>1
1/10+1/11+…+1/19 > 1/20+1/20+…+1/20 = 10/20 = 1/2
1/20+1/21+…+1/29 > 1/30+1/30+…+1/30 = 10/30 = 1/3
1/30+1/31+…+1/39 > 1/40+1/40+…+1/40 = 10/40 = 1/4
=> 1/10+1/11+…+1/39 > 1/2+1/3+1/4 = 13/12 > 1
1/10+1/11+…+1/39 > 1/2+1/3+1/4 = 13/12 > 1
Cho tổng A=1/10+1/11+1/12+...+1/99+1/100.
Chứng tỏ rằng A > 1.
Chỉ cần 30 số hạng đầu đã lớn hơn 1.
1/10+1/11+…+1/19 > 1/20+1/20+…+1/20 = 10/20 = 1/2
1/20+1/21+…+1/29 > 1/30+1/30+…+1/30 = 10/30 = 1/3
1/30+1/31+…+1/39 > 1/40+1/40+…+1/40 = 10/40 = 1/4
=>
1/10+1/11+…+1/39 > 1/2+1/3+1/4 = 13/12 > 1
Cho tổng A = 1 / 10 + 1 / 11 + 1 / 12 + ... + 1 / 99 + 1 / 100
Chứng tỏ rằng A > 1
A = 1 / 10 + ( 1 / 11 + 1 / 12 + ... + 1 / 99 + 1 / 100 )
A = 1 / 10 + ( 1 / 11 + 1 / 12 + ... + 1 / 99 + 1 / 100 ) > 1 / 10 + ( 1 / 100 + 1 / 100 + ... + 1 / 100 )
= 1 / 10 + 90 / 100 = 1
Vậy A > 1
1/10+1/11+…+1/19 > 1/20+1/20+…+1/20 = 10/20 = 1/2
1/20+1/21+…+1/29 > 1/30+1/30+…+1/30 = 10/30 = 1/3
1/30+1/31+…+1/39 > 1/40+1/40+…+1/40 = 10/40 = 1/4
=>
1/10+1/11+…+1/39 > 1/2+1/3+1/4 = 13/12 > 1
đúng nhé
\(A=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\right)\)\(A=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\right)>\frac{1}{10}+\left(\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\right)=\frac{1}{10}+\frac{90}{100}=1\)
Vậy A > 1
1. Cho A = 1/2 . 3/4 . 5/6 .....99/100
Chứng minh A^2 < 1/101
A=12.34.56...99100
⇒A<23.45.67...100101
⇒A2<23.45.67...100101.12.34.56...99100
⇒A2<1101<1100=1102
⇔A<1102
A=12.34.56...99100
⇒A<23.45.67...100101
⇒A2<23.45.67...100101.12.34.56...99100
⇒A2<1101<1100=1102
⇔A^2< 1/101
1. Cho A = 1/2 . 3/4 . 5/6 .....99/100
Chứng minh A^2 < 1/101
Cho tổng A =\(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\)
Chứng tỏ A > 1
Cho tổng A =\(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\)
Chứng tỏ A > 1
30 số hạng đầu lớn hơn 1
\(\frac{1}{10}+\frac{1}{11}+..+\frac{1}{19}>\frac{1}{20}+\frac{1}{20}+..+\frac{1}{20}=\frac{1}{2}\)\(\frac{1}{2}\)
\(\frac{1}{20}+\frac{1}{21}+..+\frac{1}{29}>\frac{1}{30}+\frac{1}{30}+..+\frac{1}{30}=\frac{1}{3}\)
\(\frac{1}{30}+\frac{1}{31}+...+\frac{1}{39}>\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{1}{4}\)
=> \(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{39}>\frac{1}{2}+\frac{1}{3}+\frac{1}{4}=\frac{13}{12}>1\)
Cho tổng A=\(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...\frac{1}{99}+\frac{1}{100}\)
Chứng tỏ rằng A > 1
\(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\)
\(=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\right)>\frac{1}{10}+\left(\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\right)\)
\(=\frac{1}{10}+\frac{90}{100}>1\)
\(A>1\left(đpcm\right)\)
A,Cho S=1/2.3/4.5/6.7/8...99/100
chứng minh rằng S<0,01
b,cho A=1/2.3/4.5/6.7/8...79/80 Chứng minh rằng A<1/9