Tìm 2 số nguyên khác nhau a và b thỏa mãn a chia hết cho b và b chia hết cho a
Cho a và b là hai số nguyên khác nhau thỏa mãn achia hết cho b và b chia hết cho a. Khi đó a/b=?
-1 bạn nhé, 2 số nguyên khác nhau mà
nhầm
nếu a là số nguyên tố(snt) mà a chia hết cho b mà b thuộc snt thì a là hợp số
ko tồn tại a và b
mình nghĩ là vậy
chưa chắc
lỡ 1/-1 thì sao, có lẽ a và b là 2 số đối nhau
cho a và b là 2 số nguyên khác nhau thỏa mãn achia hết cho b và b cũng chia hết cho a khi đó a phần b =
Cho a và b là 2 số khác nhau thỏa mãn a chia hết cho b và b chia hết cho a. Vậy phân số a/b bằng bao nhiêu ?
-1 (MIK LẤY TẤT CẢ SỐ TICK MIK ĐANG CÓ ĐỂ THẾ)
(SAI THÌ MIK MẤT HẾT)
KÍ TÊN
TẠ UYỂN NHI
Tìm các số nguyên dương a,b thỏa mãn các điều kiện(a+2) chia hết cho b và (b+3) chia hết cho a ?
Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC (H thuộc BC), gọi M là trung điểm của BC. Trên tia đối của MA lấy D sao cho DM=MA, trên tia đối cảu CD lấy điểm I sao cho CI=CA. qua I kẻ đường thẳng song song với AC cắt đường thẳng AH tại E
a) CMR: AE=BC
b) tam giác ABC cần điều kiện nào để HE lớn nhất. vì sao??
a)Tìm các số nguyên dương x, y thỏa mãn x+3 chia hết cho y, y+3 chia hết cho x
b)Tìm các số nguyên dương x, y thỏa mãn xy+x+y+2 chia hết cho cả x và y.
Tìm số tự nhiên a, biết rằng:
a, a là số nhỏ nhất khác 0 thỏa mãn a chia hết cho 15 và 115
b, a – 1 chia hết cho 52; a – 1 chia hết cho 35 và 1000 < a < 2000
a, a = BCNN(15;115) = 345
b, a – 1 ∈ BC(35;52) và 999 < a – 1 < 1999
Ta có BCNN(35;52) = 35.52 = 1820
Suy ra a – 1 ∈ {0;1820;3640;...}
Vì 999 < a – 1 < 1999 nên a – 1 = 1820
a = 1821
Cho a,b là các số nguyên dương thỏa mãn p=a^2+b^2 là số nguyên tố và p-5 chia hết cho 8 . Giả sử x,y là các số nguyên thỏa mãn ax^2-by^2 chia hết cho p. Chứng minh rằng cả 2 số x,y chia hết cho p
Cho a,b là các số nguyên dương thỏa mãn p=a^2+b^2 là số nguyên tố và p-5 chia hết cho 8 . Giả sử x,y là các số nguyên thỏa mãn ax^2-by^2 chia hết cho p. Chứng minh rằng cả 2 số x,y chia hết cho p
p=a^2+b^2 (1)
p là số nguyên tố, p-5 chia hết 8 => p lẻ >=13 và a,b có 1 chẵn 1 lẻ
A=a.x^2-b.y^2 chia hết cho p, nên có thể viết A = p(c.x^2 -d.y^2) với c,d phải nguyên
và c.p = a và d.p = b
thay (1) vào ta thấy c=a/(a^2+b^2) cần nguyên là vô lý vậy A muốn chia hết cho p <=> x và y cùng là bội số của p
Đặt \(p=8k+5\left(đk:K\in N\right)\)
Vì: \(\left(ax^2\right)^{4k+2}-\left(by^2\right)^{4k+2}⋮\left(ax^2-by^2\right)\)
\(\Rightarrow a^{4k+2}.x^{8k+4}-b^{4k+2}.y^{8k+4}⋮p\)
Mà \(a^{4k+2}.x^{8k+4}-b^{4k+2}.y^{8k+4}\)\(=\left(a^{4k+2}+b^{4k+2}\right).x^{8k+4}-b^{4k+2}\)\(\left(x^{8k+4}+y^{8k+4}\right)\)
Ta lại có: \(a^{4k+2}+b^{4k+2}=\left(a^2\right)^{2k+1}+\left(b^2\right)^{2k+1}⋮p\) ; p<d nên \(x^{8k+4}+y^{8k+4}⋮p\)
Làm tiếp đi
Tìm hai cặp số nguyên a, b khác nhau sao cho a chia hết cho b và b chia hết cho a
Ta có : a ⋮b => a= bk1 ( k1 thuộc N ; b khác 0); b ⋮ a => b=ak2 ( k2 thuộc N , a khác 0 )
=> a= ak1k2 => a= a( k1k2 ) .
=> 1=1( k1k2) => k1.k2 =1 =1.1= (-1) (-1)
=> k1=k2=1 hoặc k1=k2=-1 + Nếu k1=k2 =1 thì : a=b.1 =b b=a.1 =a
=> loại vì a và b là 2 số khác nhau + Nếu k1=k2 = -1 thì : a=b.-1=-b b=a.-1=-a
=> Nhận vì a và b là 2 số đối nhau
Kết luận : 2 số đối nhau a;b sẽ chia hết cho nhau
CHÚC BẠN HỌC TỐT
YẾN NHI CẢM ƠN BẠN RẤT NHIỀU !