(1/1x2)+(1/2x3)+(1/3x4)+.....+(1/999x1000)+1=
kết quả là phân số tối giản
Tính : 1/1x2+1/2x3+1/3x4+..................+1/999x1000+1
Viết kết quả theo phân số tối giản
\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{999}-\frac{1}{1000}+1\)
\(\frac{1}{1}-\frac{1}{1000}+1\)
\(\frac{999}{1000}+1\)
\(\frac{1999}{1000}\)
Tính tổng sau: 1/ 1x2 + 1/2x3 + 1/3x4 v+ ... + 1/999 x 1000 + 1 dưới dạng phân số tối giản .
\(Tacó:\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{999.1000}+1\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{999}-\frac{1}{1000}+1\)
\(=1-\frac{1}{1000}+1=\frac{999}{1000}+1=\frac{1999}{1000}\)
1/1x2 + 1/2x3 + 1/3x4 + ...... + 1/999x1000 + 1 = ......?
1/1.2+1/2.3+1/3.4+...+1/999.1000+1
=1-1/2+1/2-1/3+1/3-1/4+...+1/998-1/999+1/999-1/1000+1
=1-1/1000+1
=999/1000+1
=1999/1000
Chuẩn ko cần chỉnh
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{999\times1000}+1\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{999}-\frac{1}{1000}+1\)
\(=1-\frac{1}{1000}+1\)
\(=\frac{999}{1000}+1\)
\(=\frac{1999}{1000}\)
1/1x2+1/2x3+1/3x4+...+1/999x1000+1
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{999.100}+1\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{100}\)+1
=\(1-\frac{1}{100}\)+1
=\(\frac{99}{100}+1\)
=\(\frac{199}{100}\)
sorry mk lộn bài này mới đúng :
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{999.1000}\)+1
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}+1\)
=\(1-\frac{1}{1000}+1\)
=\(\frac{999}{1000}+1\)
=\(\frac{1999}{1000}\)
1/1x2 +1/2x3+1/3x4+.....+1/999x1000+1
1999/1000
tớ gặp bài này rồi, nhớ k nhé
tinh tong 1/1x2+ 1/2x3 + 1/ 3x4+...+ 1/999x1000 =
Kết quả của phép tính (viết phân số tối giản): 1/2x3 + 1/3x4 + 1/4x5 +…. + 1/9x10 là:
\(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{9\times10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}\)
\(=\frac{2}{5}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
\(=\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{10-9}{9.10}\)
\(=\frac{3}{2.3}-\frac{2}{2.3}+\frac{4}{3.4}-\frac{3}{3.4}+\frac{5}{4.5}-\frac{4}{4.5}+...+\frac{10}{9.10}-\frac{9}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}\)
\(=\frac{5}{10}-\frac{1}{10}\)
\(=\frac{2}{5}\)
tính tổng sau 1/1x2+1/2x3+1/3x4+1/999x1000
Tính tổng sau: 1/1x2 + 1/2x3 + 1/3x4 + ... 1/999x1000 + 1
Đặt A = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{999.1000}+1\)
=> A = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{999}-\frac{1}{1000}+1\)
=> A = \(1-\frac{1}{1000}+1=\frac{999}{1000}+1=\frac{1999}{1000}\)