cho f(x)= x^2+x+1
g(x) = 4-2x^3+x^4+7x^5
tìm đa thức h(x) sao cho f(x)-h(x)=g(x)
Cho 2 đa thức:
f(x)= x^5 - 3 + 7x^4 - 9x^3 + x^2 - 1/4x
g(x)= 5x^4 - x^5 + x^2 - 2x^3 + 3x^2 - 1/4
a) Tính f(x) + g(x)
b) Tính f(x) - g(x)
c) Tìm h(x) sao cho h(x) + f(x) = f(x)
a, f(x)+g(x)= (\(x^5-3\) + 7\(x^4-9x^3+x^2-\dfrac{1}{4}x\))+(\(5x^4-x^5\)+\(x^2\)\(-2x^3+3x^2-\dfrac{1}{4})\)
= \(12x^4-12x^3+5x^2-\dfrac{1}{4}x-\dfrac{13}{4}\)
b, f(x)\(-\)g(x)= (\(x^5-3\) + 7\(x^4-9x^3+x^2-\dfrac{1}{4}x\))\(-\)(\(5x^4-x^5\)+\(x^2\)\(-2x^3+3x^2-\dfrac{1}{4})\)
= f(x)+g(x)= \(x^5-3\) + 7\(x^4-9x^3+x^2-\dfrac{1}{4}x\)\(-\)\(5x^4+x^5\)\(-\)\(x^2\)\(+2x^3-3x^2+\dfrac{1}{4}\)
=2x\(^5\)+2x\(^4\)\(-7x^3\)\(-2x^2\)\(-\dfrac{1}{4}x\) \(-\) \(\dfrac{11}{4}\)
c,Ta có:h(x)+f(x)=f(x) \(\Rightarrow\)h(x)=f(x)\(-\)f(x)=0
Cho đa thức : f(x)= 9-x^5+4x+2x^3+x^2-7x^4
g(x)=x^5-9+2x^2+7x^4+2x^3+3x
a) Tính tổng h(x)= f(x)+g(x)
b)Tìm nghiệm của đa thức h(x)
Cho hai đa thức: f(x)=x3 + 2x2 + 7x - 15, g(x)=x3 - 2x2 - 7x +5
Tìm đa thức h(x) sao cho f(x)+g(x)-h(x)=0
h(x)=f(x)+g(x)=(1+1)x^3 +(2-2)x^2+(-15+5)
h(x)=2x^3-10
Cho 2 đa thức :f (x)=3x^4+2x^2-2x^4+x^2-5x
g (x)=x^4-x^2-2x +6+3x^2
Tìm đa thức h(x) sao cho h(x )+g(x)=f(x)
Tính h (-1/3) h (3/2)
Tìm nghiệm đa thức h(x)
h(x) + g(x) = f(x)
=> h(x)= f(x) - g(x) = \(3x^4+2x^2-2x^4+x^2-5x-\left(x^4-x^2-2x+6+3x^2\right)=x^2-3x-6\)\(h\left(-\dfrac{1}{3}\right)=\left(-\dfrac{1}{3}\right)^2-3\left(-\dfrac{1}{3}\right)-6=\dfrac{-44}{9}\)
\(h\left(\dfrac{3}{2}\right)=\left(\dfrac{3}{2}\right)^2-3\cdot\dfrac{3}{2}-6=-\dfrac{33}{4}\)
\(x^2-3x-6=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{33}}{6}\\x=\dfrac{3-\sqrt{33}}{6}\end{matrix}\right.\)
Cho hai đa thức f(x) = 2x^4+5x^3-x+8 và g(x) =x^4-x^2+3x+9. Tìm đa thức h(x) sao cho:
a)f(x) - h(x) = g(x).
b) h(x) - g(x) =f(x)
Ta có:\(f\left(x\right)-h\left(x\right)=g\left(x\right)\Leftrightarrow h\left(x\right)=f\left(x\right)-g\left(x\right)\)
\(\Leftrightarrow h\left(x\right)=\left(2x^4+5x^3-x+8\right)-\left(x^4-x^2+3x+9\right)\)
\(=2x^4+5x^3-x+8-x^4-x^2-3x-9\)
\(=x^4+5x^3+x^2-4x-1.\)
Vậy, đa thức cần tìm là: \(h\left(x\right)=x^4+5x^3+x^2-4x-1.\)
Ta có: \(h\left(x\right)-g\left(x\right)=f\left(x\right)\Leftrightarrow h\left(x\right)=f\left(x\right)+g\left(x\right)\)
\(\Leftrightarrow h\left(x\right)=\left(2x^4+5x^3-x+8\right)+\left(x^4-x^2+3x+9\right)\)
\(=2x^4+5x^3-x+8+x^4-x^2+3x+9\)
\(=3x^4+5x^3-x^2+2x+17\)
Vậy, đa thức cần tìm là:\(h\left(x\right)=3x^4+5x^3-x^2+2x+17.\)
Cho 2 đa thức: f (x)= \(9-x^5+4x-2x^3+x^2-7x^4\)
g (x)=\(x^5-9+2x^2+7x^4+2x^3-3x\)
a) Tính tổng h (x)= f (x) + g(x)
b) Tìm nghiệm của đa thức h (x)
Giải:
a) \(h\left(x\right)=f\left(x\right)+g\left(x\right)\)
\(\Leftrightarrow h\left(x\right)=9-x^5+4x-2x^3+x^2-7x^4+x^5-9+2x^2+7x^4+2x^3-3x\)
\(\Leftrightarrow h\left(x\right)=x+3x^2\)
b) Để đa thức h(x) có nghiệm
\(\Leftrightarrow h\left(x\right)=0\)
\(\Leftrightarrow x+3x^2=0\)
\(\Leftrightarrow x\left(1+3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\1-3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy ...
và g(x)=x^5-8+3x^2+7x^4+2x^3-3x .
A/tính f(x)+g(x); g(x)-f(x) # B/ tìm bậc.hệ số cao nhất.hệ số tự do của g(x)-f(x)# C/tìm nghiệm của đa thức h(x)=f(x)+g(x)...
a)
f(x)= -x5 -7x4 -2x3+ x2 + 4x + 8
g(x)=x5 +7x4+2x3+3x2 - 3x -8
f(x)+g(x) =0 -0 -0 + 4x2 +x+0
g(x)=x5 +7x4+2x3+3x2 - 3x -8
f(x)= -x5 -7x4 -2x3+ x2 + 4x + 8
g(x)-f(x) =2x5+14x4+4x3+2x2-7x -16
b)
Bậc:5
Hệ số cao nhất:2
hệ số tự do:16
c)
Để đt h(x) có nghiệm thì
4x2+x=0
->4x.x+x=0
->(4x+1)x=0
->th1:x=0 -> x=0
4x+1=0 -> x=-1/4
Vậy đt h(x) có nghiệm là x=0 hoặc x=-1/4
Lần sau bn viết rõ hơn nhé
mik dich mún lòi mắt
Câu 1: Cho f(x) = −2x
4 + 3x
3 − 4x
2 + x − 7 và g(x) = −x
4 + 2x
3 − 3x
2 − x
3 + 3x
4 − 17. Khi
đó M(x) = f(x) + g(x)
Câu 2: Cho đa thức f(x) = −x
4 + 2x
3 − 5x
2 + 7x − 3 và g(x) = −3x
4 + 2x
3 − 7x + 5. Biết
M(x) = f(x) − g(x). Tính M(1) =?
5 Cho đa thức f(x)=x^5-4x^4-2x^2-7; g(x)=-2x^5+6x^4-2x^2+6
Tính f(x)+g(x); f(x)-g(x)
b) Cho đa thức f(x)=5x^4+7x^3-6x^2+3x-7 ; g(x)=-4x^4+2x^3-5x^2+4x+5
Tính f(x)+g(x) ; f(x)-g(x)
a)f(x)+g(x)=\(x^5-4x^4-2x^2-7-2x^5+6x^4-2x^2+6.\)
=\(-x^5+2x^4-4x^2-1\)
f(x)-g(x)=\(x^5-4x^4-2x^2-7+2x^5-6x^4+2x^2-6\)
=\(3x^5-10x^4-13\)
b)f(x)+g(x)=\(5x^4+7x^3-6x^2+3x-7-4x^4+2x^3-5x^2+4x+5\)
=\(x^4+9x^3-11x^2+7x-2\)
f(x)-g(x)=\(5x^4+7x^3-6x^2+3x-7+4x^4-2x^3+5x^2-4x-5\)
=\(9x^4+5x^3-x^2-x-12\)
a )
\(f\left(x\right)+g\left(x\right)=x^5-4x^4-2x^2-7+-2x^5+6x^4-2x^2+6\)
\(\Rightarrow f\left(x\right)+g\left(x\right)=\left(x^5-2x^5\right)+\left(6x^4-4x^4\right)-\left(2x^2+2x^2\right)+\left(6-7\right)\)
\(\Rightarrow f\left(x\right)+g\left(x\right)=-x^5+2x^4-4x^2-1\)
\(f\left(x\right)-g\left(x\right)=x^5-4x^4-2x^2-7-\left(-2x^5+6x^4-2x^2+6\right)\)
\(\Rightarrow f\left(x\right)-g\left(x\right)=x^5-4x^4-2x^2-7+2x^5-6x^4+2x^2-6\)
\(\Rightarrow f\left(x\right)-g\left(x\right)=\left(x^5+2x^5\right)-\left(4x^4+6x^4\right)+\left(2x^2-2x^2\right)-\left(6+7\right)\)
\(\Rightarrow f\left(x\right)-g\left(x\right)=3x^5-10x^4-13\)