Cho x,y,z lá ba số thỏa mãn \(x^2+y^2+z^2=2012\) .Tìm GTNN của biểu thức M=\(2xy-yz-zx\)
Cho các số thực a,b,c thỏa mãn \(x^2+y^2+z^2=2016\)
Tìm GTNN của biểu thức M=2xy-yz-zx
AI BT CÁCH GIẢI CHỈ HỘ MK VỚI K CHO NHA
Cho các số thực dương x, y, z thỏa mãn x3 + y3 + z3 = 24. Tìm GTNN của biểu thức
\(M=\dfrac{xyz+2\left(x+y+z\right)^2}{xy+yz+zx}-\dfrac{8}{xy+yz+zx+1}\)
Cho các số thực dương x,y,z thỏa mãn x^3+y^3+z^3=24.Tìm GTNN cua biểu thức
P=\((xyz+2(x+y+z)^2)/(xy+yz+zx)-8/(xy+yz+zx+1)\)
cho ba số thực x,y,z thỏa mãn xy+yz+zx=xyz. tìm giá trị nhỏ nhất của biểu thức H=\(\dfrac{x^2}{9z+zx^2}\)+\(\dfrac{y^2}{9x+xy^2}\)+\(\dfrac{z^2}{9y+yz^2}\)
1) Cho ba số x, y, z thỏa mãn:
xy + yz + zx = 8
x + y + z = 5
Tìm GTNN, GTLN của x.
2) Cho ba số x, y, z thỏa mãn:
xy + yz + zx = 1
\(x^2+y^2+z^2=2\)
Mình quên yêu cầu bài 2: Tìm GTNN GTLN của x.
yêu cầu bài 2 Tìm giá trị min max của x
Cho 3 số x, y, z thỏa mãn : x2 + y2 + z2 = 2020. Tìm giá trị nhỏ nhất của biểu thức : M = 2xy - yz - zx + 1
Tìm GTNN của biểu thức A=2/3.x^2+y^2+z^2-(xy+yz+zx) với x;y;z là các số thực thỏa mãn x>3 và xyz=1
Cho ba số thực dương x,y,z thỏa mãn x+y+z = 2. Tìm GTNN của biểu thức:
\(P=\dfrac{1}{xy}+\dfrac{1}{yz}\)
\(P=\dfrac{1}{y}\left(\dfrac{1}{x}+\dfrac{1}{z}\right)\ge\dfrac{1}{y}.\dfrac{4}{x+z}=\dfrac{4}{y\left(x+z\right)}\ge\dfrac{4}{\dfrac{\left(y+x+z\right)^2}{4}}=4\)
\(P_{min}=4\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{2};1;\dfrac{1}{2}\right)\)
Cho các số x, y, z thỏa mãn: xy+yz+zx=1
Tính giá trị biểu thức
\(M=\dfrac{1}{x^2+2yz-1}+\dfrac{1}{y^2+2zx-1}+\dfrac{1}{z^2+2xy-1}\)