Chứng minh rằng có thể tìm được một số tự nhiên có dạng 20162016...2016 chia hết cho 41.
Bạn xem lại đề nhé, phải là chứng minh rằng có thể tìm được một số tự nhiên dạng 20152015...2015 chia hết cho 41
Chọn 41 số dạng 20152015...2015 khác nhau.
Nếu có 1 số trong nhóm chia hết cho 41. => đpcm
Nếu ko có số nào chia hết cho 41 thì theo nguyên lý Directle thì có ít nhất một cặp số (A;B) có cùng số dư khi chia cho 41.
Khi đó hiệu A - B = 20152015...201500...000 = 20152015...2015 (tạm gọi =C) x 1000...000 sẽ chia hết cho 41.
Mà 1000...000 không chia hết chết cho 41 nên C = 20152015...2015 sẽ chia hết cho 41. Nên C là số cần tìm.
Vậy, luôn tìm được ít nhất 1 số tự nhiên dạng 20152015...2015 chia hết cho 41.
chứng minh rằng tồn tại số có dạng 20162016...2016 gồm k số 2016(k là số tự nhiên, 1<k<2018) chia hết cho 2017
chứng minh rằng có thể tìm được một số tự nhiên dạng 20152015...2015 chia het cho 41
Chọn 41 số dạng 20152015...2015 khác nhau.
Nếu có 1 số trong nhóm chia hết cho 41. => đpcm
Nếu ko có số nào chia hết cho 41 thì theo nguyên lý Directle thì có ít nhất một cặp số (A;B) có cùng số dư khi chia cho 41.
Khi đó hiệu A - B = 20152015...201500...000 = 20152015...2015 (tạm gọi =C) x 1000...000 sẽ chia hết cho 41.
Mà 1000...000 không chia hết chết cho 41 nên C = 20152015...2015 sẽ chia hết cho 41. Nên C là số cần tìm.
Vậy, luôn tìm được ít nhất 1 số tự nhiên dạng 20152015...2015 chia hết cho 41.
tui mới học lớp 6 thui mà, nguyên lý Directle là gì sao tui bt dc
Chứng minh rằng luôn tồn tại số có dạng 20162016...2016 (gồm các số 2016 viết liên tiếp nhau) chia hết cho 2017.
Xét các số :2016;20162016;..........;2016;...;2016(2018 số 2016)
Có 2018 số nên chia cho 2017 có ít nhất 2 số đồng dư
Giả sử số đó là 2016..........2016 (m số 2016) và 2016.......2016(n số 2016) (m;n E N m>n)
Suy ra 2016.........2016-2016.......2016 chia hết cho 2017
m số 2016 n số 2016
Suy ra 2016...........2016x1000
m-n số 2016
Mà (1000 n ;2017)=1
Suy ra 2016.......2016 chia hết cho 2017(m-n số 2016) (đpcm)
dùng dirichle, xét 2018 số 2016,20162016,....,20162016...2016(2018 số 2016) thì luôn tồn tại 2 số có hiệu chia hết cho 2017, gọi hai số đó là
20162016...2016(m số 2016) và 20162016...2016(n số 2016) trong đó 1≤m≤n≤20181≤m≤n≤2018
hiệu của chúng là 20162016...201600..0(n số 2016 và m-n số 0) chia hết cho 2017
rút 10m−n10m−n ra và để ý (10m−n;2017)=1(10m−n;2017)=1.
do đó ta có đpcm
chứng minh rằng tồn tại số có dạng 20162016...2016 gồm k số 2016(k là số tự nhiên, 1<k<2018)
số đó chia hết cho 2017 thôi
mình nhanh nhất nhé
Chứng minh rằng có thể tìm được một số tự nhiên có dạng 20152015...2015 chia hết cho 41.
Bài toán 1 : Chứng minh rằng mọi số nguyên tố p ta có thể tìm được một số được viết bởi hai chữ số chia hết cho p.
Bài toán 2 : Chứng minh rằng nếu một số tự nhiên không chia hết cho 2 và 5 thì tồn tại bội của nó có dạng : 111...1.
Bài toán 3 : Chứng minh rằng tồn tại số có dạng 1997k (k thuộc N) có tận cùng là 0001.
Bài toán 4 : Chứng minh rằng nếu các số nguyên m và n nguyên tố cùng nhau thì tìm được số tự nhiên k sao cho mk - 1 chia hết cho n
Cho 100 số tự nhiên, chứng minh rằng có thể tìm được 1 số hoặc tổng một số số, chia hết cho 100
cho 2016 số tự nhiên a1,a2,a3,...,a2015,a2016. Chứng minh rằng trong 2016 số ấy, tồn tại một số chia hết cho 2016 hoặc tồn tại một vài số có tổng chia hết cho 2016