giải chi tiết giúp
\(\frac{-1}{21}+\frac{-1}{28}\)
Tính:
1/3+1/6+1/10+1/15+1/21+1/28+1/36+1/45
giải chi tiết giúp mình với nhé
ta có
(1/3+1/6+1/36) +(1/10+1/15+1/45)+(1/21+1/28)
=(\(\frac{12+6+1}{36}\)+\(\frac{9+6+2}{90}\)+\(\frac{4+3}{84}\)
19/36+17/90+1/12
=(19/36+1/12)+17/90
=7/12+17/90
=105/180+34/180
=139/180
1/3 +1/6+1/10+1/15+1/21+1/28+1/36+1/45
=1/1x3+1/3x2+1/2x5+1/3x5+1/3x7+1/7x4+1/4x9+1/9x5
=1/1-1/3+1/3-1/2....+1/9-1/5
=1/1
bạn ơ sao mình tính trong máy tính đc 4/5 mà
tìm số tự nhiên x biết:
\(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{1}{x\left(x+1\right)}\)
Giúp tớ giải với.Tớ giải được đề dưới này rồi:
\(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x\left(x+1\right)}\)
1/21 + 1/28 + 1/36 + ...+ 1/x(x+1)
=> 2/42 + 2/56 + 2/72 +....+ 2/x(x+1)
=> 2.(1/42 + 1/56 + 1/72 + ... + 1/x.(x+1))
=> 2 .(1/6.7 + 1/7.8 + 1/8.9 + ..+ 1/x.(x+1))
=> 2. ( 1/6 - 1/7 + 1/7-1/8 + ...+ 1/x - 1/x+1
=> 2 . (1/6 - 1/x+1)
=>1/3 - 2/x+1
Chứng minh rằng : \(\frac{1}{3}+\frac{1}{7}+\frac{1}{13}+\frac{1}{21}+\frac{1}{31}+\frac{4}{43}+\frac{1}{57}+\frac{1}{73}+\frac{1}{91}<1\)
( lời giải chi tiết nha , mình đang cần gấp )
Giải:
Vì
Nên ta phải chứng minh:
=> ( điều phải chứng minh)
Vì
Nên ta phải chứng minh:
=> ( điều phải chứng minh)
Tính:
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2017.2018.2019}\)
Giải chi tiết giúp mình nhé
Đặt biểu thức là A
\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+.2018.2019\)
\(2A=\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\left(\frac{1}{2017.2018}-\frac{1}{2018.2019}\right)\)
\(2A=\frac{1}{2}-\frac{1}{2018.2019}\)
A= 1/4 - 1/(2018.2019)
Vậy A = ... (tự ghi)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2017.2018.2019}\)
\(=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{2017.2018.2019}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2017.2018}-\frac{1}{2018.2019}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{2018.2019}\right)\)
Tự làm nốt
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2017.2018.2019}\)
\(=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{2017.2018.2019}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2017.2018}-\frac{1}{2018.2019}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2018.2019}\right)\)
Đến đây tự làm tiếp :)))
Tìm n\(\in\) N*, biết rằng:
\(\frac{1}{21}+\frac{1}{77}+\frac{1}{165}+.....+\frac{1}{n^2+4n}=\frac{56}{673}\)
nếu giải thích chi tiết mình cho 2 tick
\(\frac{1}{21}+\frac{1}{77}+\frac{1}{165}+...+\frac{1}{n^2+4n}=\frac{56}{673}\)
<=> \(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{n.\left(n+4\right)}=\frac{56}{673}\)
<=> \(4.\left(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{n.\left(n+4\right)}\right)=4.\frac{56}{673}\)
<=> \(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{n\left(n+4\right)}=\frac{224}{673}\)
<=> \(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{n}-\frac{1}{n+4}=\frac{224}{673}\)
<=> \(\frac{1}{3}-\frac{1}{n+4}=\frac{224}{673}\)
<=> \(\frac{n+4-3}{3.\left(n+4\right)}=\frac{224}{673}\Leftrightarrow\frac{n}{3.\left(n+4\right)}=\frac{224}{673}\)
<=> 673n = 224.3(n+4)
<=> 673n = 224.3.n + 224.3.4
<=> 673n = 672n + 2688
<=> 673n - 672n = 2688
<=> n = 2688
\(\frac{1}{1-\frac{1}{1-\frac{1}{1-\frac{1}{1-\frac{1}{3}}}}}=?\)
giải chi tiết giúp mình nha
các bạn giải chi tiết giúp mình.Tính nhanh: \(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....+\frac{1}{45}\)
= 2/2 + 2/6 + 2/12+...+2/90 = 2(1/2 +1/6 + 1/12 + ...+ 1/90) = 2(1/1.2 + 1/2.3 + 1/3.4 + ... + 1/9.10) = 2(1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/9 - 1/10) = 2(1 - 1/10) = 2 . 9/10 = 9/5
tìm số tự nhiên x biết:
\(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{1}{x\left(x+1\right)}=\frac{2}{9}\)
Giúp tớ với. Tớ giải được đề này rồi
\(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)
tìm số tự nhiên x biết:
\(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{1}{x\left(x+1\right)}=\frac{2}{9}\)
Giúp tớ với. Tớ giải được đề này rồi
\(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)
* ĐK: \(x\ne0\)
Đề ra ...<=> \(\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+...+\frac{1}{x\left(x+1\right)}=\frac{2}{9}\)
<=> \(\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+...+\frac{2}{x\left(x+1\right)}=\frac{1}{9}\)
<=> \(\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+...+\frac{1}{x\left(x+1\right)}+\frac{1}{x\left(x+1\right)}=\frac{1}{9}\)
<=>\(\frac{1}{6}-\frac{1}{x+1}+\frac{1}{x\left(x+1\right)}=\frac{1}{9}\)
<=>\(\frac{1}{x+1}\left(1-\frac{1}{x}\right)=\frac{1}{6}-\frac{1}{9}\)
<=> \(\frac{x-1}{x\left(x+1\right)}=\frac{1}{36}\)
<=> \(\frac{x-1}{x\left(x-1\right)}=\frac{x-1}{36.\left(x-1\right)}\)
=> x(x-1) = 36. (x-1) => x =36
\(\frac{2}{2}.\left(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x+\left(x+1\right)}\right)=\frac{2}{9}\)
\(2\left(\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{2}{9}\)
\(\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+...+\frac{1}{x.\left(x+1\right)}=\frac{1}{9}\)
\(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{9}\)
\(\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)
\(\frac{1}{x+1}=\frac{1}{6}-\frac{1}{9}\)
\(\frac{1}{x+1}=\frac{1}{18}\)
x+1=18
x=18-1
x=17