Chứng tỏ phân số A = \(\frac{3n-2}{4n-3}\) ( Với n \(\in\) Z) là phấn số tối giản
Chứng tỏ phân số \(\frac{3n-2}{4n-3}\) ( với n \(\in\) Z ) là phân số tối giản
GIÚP MIK NHA MIK TICK CHO BN NÀO LÀM ĐÚNG VÀ NHANH NHẤT
trong sách nâng cao và phát triển toán
đặt d là UCLN( 3n - 2;4n - 3)
=> 3n - 2 : d => 12n - 8
Chứng tỏ phân số n+1/3n+2 là phân số tối giản với mọi nguyên n
Chứng tỏ a/b tối giản thì a/a+b tối giản.
chứng minh các phân số sau là phân số tối giản :
2n+1/4n+3
4n+1/12n+7
Bạn nào giỏi giúp mik nha, các bạn chỉ cần làm từng phần ra rồi bấm gửi thôi, bạn nào làm đầy đủ 3 phần sớm nhất mình sẽ cho 10 pics anime+ 1 dấu tik =)
Đặt \(d=\left(n+1,3n+2\right)\).
Suy ra \(\hept{\begin{cases}n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow3\left(n+1\right)-\left(3n+2\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
Đặt \(d=\left(2n+1,4n+3\right)\).
Suy ra \(\hept{\begin{cases}2n+1⋮d\\4n+3⋮d\end{cases}}\Rightarrow\left(4n+3\right)-2\left(2n+1\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
Đặt \(d=\left(4n+1,12n+7\right)\).
Suy ra \(\hept{\begin{cases}4n+1⋮d\\12n+7⋮d\end{cases}}\Rightarrow\left(12n+7\right)-3\left(4n+1\right)=4⋮d\Rightarrow4n⋮d\Rightarrow1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
Chứng tỏ phân số \({3n-2 \over 4n-3}\) với n c N* là phân số tối giản
1. Chứng tỏ rằng phân số \(\frac{2n+5}{3n+7}\)là phân số tối giản với mọi n\(\in\)Z
Gọi d là (2n+5;3n+7)
\(\Rightarrow\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\)
=> [6n+15 - ( 6n+14 )] \(⋮\) d
=> 1 \(⋮\)d
=> phân số trên tối giản
Cho phân số A=n+1/n+3(n€Z, n khác 3)
Tìm n để A là phân số tối giản
Chứng tỏ 12n+1/30n+2 là phấn số tối giản
1. Để A tối giản thì:
(n + 1, n + 3) = 1
Gọi d là ƯC nguyên tố của n + 1 và n + 3
=> n + 3 - n - 1 chia hết cho d
=> 2 chia hết cho d
Mà d nguyên tố
=> d = 2
Tìm n để n + 1 chia hết cho d; n + 3 chia hết cho 2
Vì n + 3 = n + 1 + 2 nên n + 3 chia hết cho 2 thì n + 1 chia hết cho 2
=> n + 3 = 2k (k thuộc Z)
=> n = 2k - 3
Vậy n khác 2k - 3 thì A tối giản.
2. 12n + 1 / 30n + 2 tối giản
=> (12n + 1, 30n + 2) = 1
Gọi ƯCLN (12n + 1, 30n + 2) = d
=> 12n + 1 chia hết cho d => 5.(12n + 1) = 60n + 5 chia hết cho d
=> 30n + 2 chia hết cho d => 2.(30n + 2) = 60n + 4 chia hết cho d
=> 60n + 5 - 60n - 4 chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy p/số trên tối giản.
Chứng tỏ phân số \(\frac{3n-2}{4n-2}\)là phân số tối giản, trong đó n e N*
Lưu ý : e là thuộc
3n-2/4n-2=1-2/n-2=-1/n-2(ko rút gọn đc nữa =>đây là PS tối giản)
mik nghĩ là làm thế
Chứng tỏ 2n+3/4n+7 là phân số tối giản với n thuộc Z
Gọi d là ƯCLN (2n+3; 4n+7) (d thuộc N)
=> \(\hept{\begin{cases}2n+3⋮d\\4n+7⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+7⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+7⋮d\end{cases}}}\)
=> (4n+7)-(4n+6) chia hết cho d
=> 4n+7-4n-6 chia hết cho d
=> 1 chia hết cho d. Mà d thuộc N
=> d=1 => ƯCLN (2n+3; 4n+7)=1
=> \(\frac{2n+3}{4n+7}\)tối giản với n thuộc Z
Gọi d là ƯC(2n + 3 ; 4n + 7)
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+7⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4\left(2n+3\right)⋮d\\2\left(4n+7\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}8n+12⋮d\\8n+14⋮d\end{cases}}}\)
=> ( 8n + 12 ) - ( 8n + 14 ) chia hết cho d
=> 2 chia hết cho d
* d = 1 => 2n + 3 chia hết cho 1
* d = 2 => 2n + 3 không chia hết cho 2 vì 3 không chia hết cho 2
=> d = 1
=> ƯCLN(2n + 3; 4n + 7) = 1
=> \(\frac{2n+3}{4n+7}\)tối giản ( đpcm )
Gọi ƯCLN(2n+3;4n+7) = d (d thuộc N*)
Ta có:\(\hept{\begin{cases}2n+3⋮d\\4n+7⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+7⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+7⋮d\end{cases}}\)
\(\Rightarrow\left(4n+7\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow\frac{2n+3}{4n+7}\)là phân số tối giản với mọi n thuộc Z(ĐPCM)
a) Tìm \(x\in Z\)để phân số \(A=\frac{3x+2}{x+1}\)là số nguyên.
b) Chứng tỏ \(B=\frac{3n+2}{2n+1}\)là phân số tối giản với mọi \(n\in N\).
a) Để \(A=\frac{3x+2}{x+1}\) là số nguyên thì:
\(3x+2⋮x+1\)
Ta có: 3x + 2 = 3(x + 1) - 1
mà 3x + 2 \(⋮\)x+1 => 3(x + 1) - 1\(⋮\)x + 1
có x + 1 \(⋮\)x+1 => -1 \(⋮\)x+1 hay x + 1 \(\in\)Ư(-1) = {1;-1}
Ta có bảng sau:
x+1 | 1 | -1 |
x | 0 | -2 |
Vậy để \(A=\frac{3x+2}{x+1}\) là số nguyên thì x = 0 hoặc x = 2
b) Gọi ƯCLN(3n + 2, 2n + 1) = d (d \(\in\)N)
\(=>\hept{\begin{cases}3n+2⋮d\\2n+1⋮d\end{cases}}\)
\(=>\hept{\begin{cases}2\left(3n+2\right)⋮d\\3\left(2n+1\right)⋮d\end{cases}}\)
\(=>\hept{\begin{cases}6n+4⋮d\\6n+3⋮d\end{cases}}\)
\(=>\left(6n+4\right)-\left(6n+3\right)⋮d\)
\(=>1⋮d\) \(=>d=1\)
Vậy phân số \(B=\frac{3n+2}{2n+1}\) là phân số tối giản
a, Chứng tỏ với mọi số nguyên n, p/s \(\frac{n^3+2n}{n^4+3n^2+1}\) là tối giản
b, TÌm tất cả giá trị x thuộc Z để phân số: \(\frac{18x+3}{21x+7}\)là phân số tối giản
goi d=UCLN(n3+2n;n4+3n2+1) (d\(\in\)N*)
\(\Rightarrow\)n3+2n va n4+3n2 +1 chia het cho d \(\Rightarrow\)n4+3n2+1-n(n3+2n) =n2+1 chia het cho d
n3+2n -n(n2+1)=n chia het cho d\(\Rightarrow\)n2 +1-n.n==1 chia het cho d\(\Rightarrow\)d \(\in\)U(1)ma d lon nhat , d\(\in\)N* nen d=1
do đó phân số trên là tối giản