Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Hải Yến
Xem chi tiết
TRỊNH THỊ KIM HỒNG
5 tháng 3 2016 lúc 15:09

trong sách nâng cao và phát triển toán

evermore Mathematics
5 tháng 3 2016 lúc 15:12

đặt d là UCLN( 3n - 2;4n - 3)

=> 3n - 2 : d => 12n - 8

channel Anhthư
Xem chi tiết
Đoàn Đức Hà
14 tháng 5 2021 lúc 16:01

Đặt \(d=\left(n+1,3n+2\right)\).

Suy ra \(\hept{\begin{cases}n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow3\left(n+1\right)-\left(3n+2\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm. 

Khách vãng lai đã xóa
Đoàn Đức Hà
14 tháng 5 2021 lúc 16:02

Đặt \(d=\left(2n+1,4n+3\right)\).

Suy ra \(\hept{\begin{cases}2n+1⋮d\\4n+3⋮d\end{cases}}\Rightarrow\left(4n+3\right)-2\left(2n+1\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm. 

Khách vãng lai đã xóa
Đoàn Đức Hà
14 tháng 5 2021 lúc 16:03

Đặt \(d=\left(4n+1,12n+7\right)\).

Suy ra \(\hept{\begin{cases}4n+1⋮d\\12n+7⋮d\end{cases}}\Rightarrow\left(12n+7\right)-3\left(4n+1\right)=4⋮d\Rightarrow4n⋮d\Rightarrow1⋮d\Rightarrow d=1\).

Do đó ta có đpcm. 

Khách vãng lai đã xóa
Nguyễn Thị Hồng Dương
Xem chi tiết
Nguyễn Thị Hồng Dương
6 tháng 4 2018 lúc 22:19

\({3n-2 \over 4n-3}\)

Thái Thị Trà My
Xem chi tiết
Hiền Thương
6 tháng 7 2021 lúc 19:55

Gọi d là (2n+5;3n+7)

\(\Rightarrow\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\)

=> [6n+15 - ( 6n+14 )] \(⋮\) d 

=> 1 \(⋮\)d

=> phân số trên tối giản 

Khách vãng lai đã xóa
Tấn Huy Đăng Lê
Xem chi tiết
Minh Hiền
23 tháng 2 2016 lúc 8:59

1. Để A tối giản thì:

(n + 1, n + 3) = 1

Gọi d là ƯC nguyên tố của n + 1 và n + 3

=> n + 3 - n - 1 chia hết cho d

=> 2 chia hết cho d

Mà d nguyên tố

=> d = 2

Tìm n để n + 1 chia hết cho d; n + 3 chia hết cho 2

Vì n + 3 = n + 1 + 2 nên n + 3 chia hết cho 2 thì n + 1 chia hết cho 2

=> n + 3 = 2k (k thuộc Z)

=> n = 2k - 3

Vậy n khác 2k - 3 thì A tối giản.

2. 12n + 1 / 30n + 2 tối giản

=> (12n + 1, 30n + 2) = 1

Gọi ƯCLN (12n + 1, 30n + 2) = d

=> 12n + 1 chia hết cho d => 5.(12n + 1) = 60n + 5 chia hết cho d

=> 30n + 2 chia hết cho d => 2.(30n + 2) = 60n + 4 chia hết cho d

=> 60n + 5 - 60n - 4 chia hết cho d

=> 1 chia hết cho d

=> d = 1

Vậy p/số trên tối giản.

Đặng Nguyễn Trường Phước
Xem chi tiết
yume
25 tháng 2 2018 lúc 11:24

3n-2/4n-2=1-2/n-2=-1/n-2(ko rút gọn đc nữa =>đây là PS tối giản)

mik nghĩ là làm thế

Bùi Việt Hưng
Xem chi tiết
Tran Le Khanh Linh
27 tháng 4 2020 lúc 14:17

Gọi d là ƯCLN (2n+3; 4n+7) (d thuộc N)

=> \(\hept{\begin{cases}2n+3⋮d\\4n+7⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+7⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+7⋮d\end{cases}}}\)

=> (4n+7)-(4n+6) chia hết cho d

=> 4n+7-4n-6 chia hết cho d

=> 1 chia hết cho d. Mà d thuộc N 

=> d=1 => ƯCLN (2n+3; 4n+7)=1

=> \(\frac{2n+3}{4n+7}\)tối giản với n thuộc Z

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
27 tháng 4 2020 lúc 14:38

Gọi d là ƯC(2n + 3 ; 4n + 7)

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+7⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4\left(2n+3\right)⋮d\\2\left(4n+7\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}8n+12⋮d\\8n+14⋮d\end{cases}}}\)

=> ( 8n + 12 ) - ( 8n + 14 ) chia hết cho d

=> 2 chia hết cho d

* d = 1 => 2n + 3 chia hết cho 1

* d = 2 => 2n + 3 không chia hết cho 2 vì 3 không chia hết cho 2

=> d = 1

=> ƯCLN(2n + 3; 4n + 7) = 1

=> \(\frac{2n+3}{4n+7}\)tối giản ( đpcm )

Khách vãng lai đã xóa
le phuong anh
27 tháng 4 2020 lúc 14:44

Gọi ƯCLN(2n+3;4n+7) = d (d thuộc N*)

Ta có:\(\hept{\begin{cases}2n+3⋮d\\4n+7⋮d\end{cases}}\)

    \(\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+7⋮d\end{cases}}\)

    \(\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+7⋮d\end{cases}}\)

   \(\Rightarrow\left(4n+7\right)-\left(4n+6\right)⋮d\)

   \(\Rightarrow1⋮d\)

   \(\Rightarrow d=1\)

    \(\Rightarrow\frac{2n+3}{4n+7}\)là phân số tối giản với mọi n thuộc Z(ĐPCM)

Khách vãng lai đã xóa
Lê Công Nguyên
Xem chi tiết
nguyen thu phuong
5 tháng 3 2018 lúc 22:20

a) Để \(A=\frac{3x+2}{x+1}\) là số nguyên thì:

\(3x+2⋮x+1\)

Ta có: 3x + 2 = 3(x + 1) - 1

mà 3x + 2 \(⋮\)x+1 => 3(x + 1) - 1\(⋮\)x + 1

có x + 1 \(⋮\)x+1 => -1 \(⋮\)x+1  hay x + 1 \(\in\)Ư(-1) = {1;-1}

Ta có bảng sau:

x+11-1
x0-2

Vậy để \(A=\frac{3x+2}{x+1}\) là số nguyên thì x = 0 hoặc x = 2

b) Gọi ƯCLN(3n + 2, 2n + 1) = d (d \(\in\)N)

\(=>\hept{\begin{cases}3n+2⋮d\\2n+1⋮d\end{cases}}\)

\(=>\hept{\begin{cases}2\left(3n+2\right)⋮d\\3\left(2n+1\right)⋮d\end{cases}}\)

\(=>\hept{\begin{cases}6n+4⋮d\\6n+3⋮d\end{cases}}\)

\(=>\left(6n+4\right)-\left(6n+3\right)⋮d\)

\(=>1⋮d\) \(=>d=1\)

Vậy phân số \(B=\frac{3n+2}{2n+1}\) là phân số tối giản

Cao Chí Hiếu
Xem chi tiết
Hoàng Tử Lớp Học
21 tháng 7 2015 lúc 18:23

goi d=UCLN(n3+2n;n4+3n2+1)          (d\(\in\)N*)

\(\Rightarrow\)n3+2n va n4+3n2 +1 chia het cho d \(\Rightarrow\)n4+3n2+1-n(n3+2n) =n2+1 chia het cho d

n3+2n -n(n2+1)=n chia het cho d\(\Rightarrow\)n2 +1-n.n==1 chia het cho d\(\Rightarrow\)\(\in\)U(1)ma d lon nhat , d\(\in\)Nnen d=1 

do đó phân số trên là tối giản

Phạm Mai Chi
9 tháng 3 2018 lúc 9:37

giỏi lắm hoàng cảm ơn nhiều