Chúng tỏ rằng :
1.3.5.7....97.99 = 51/2 . 52/2....10/2
So sánh:
\(A=1.3.5.7...97.99\)
\(B=\frac{51}{2}.\frac{52}{2}.\frac{53}{2}.\frac{54}{2}...\frac{99}{2}.\frac{100}{2}\)
bang nhau
Giai:
A=1.3.5.7...97.99=\(\frac{\left(1.3.5...97.99\right).\left(2.4.6...100\right)}{2.4.6...100}\)
=\(\frac{1.2.3.4...99.100}{\left(1.2\right).\left(2.2\right)...\left(2.50\right)}\)
=\(\frac{\left(1.2.3...50\right).\left(51.52...99.100\right)}{\left(1.2.3...49.50\right).2^{50}}\)
=\(\frac{51.52...99.100}{2.2...2.2}\)
=\(\frac{51}{2}.\frac{52}{2}.\frac{53}{2}...\frac{100}{2}\)
mà B=\(\frac{51}{2}.\frac{52}{2}.\frac{53}{2}...\frac{100}{2}\)
Nên A=B
Vậy A=B
\(1.3.5.7...97.99=\frac{100!}{2.4.6.8...100}\)
\(=\frac{1.2.3.4...100}{1.2.2.2.3.2...50.2}\)
\(=\frac{51.52.53...100}{2}\)
Vậy \(A=B\)
\(A=1.3.5.....97.99\)
\(=\frac{1.2.3.4......98.99.100}{2.4.6.8......96.98.100}\)
\(=\frac{1.2.3.4....98.99.100}{2.1.2.2.2.3........49.2.50.2}\)
\(=\frac{\left(1.2.3.4......50\right)51.52....98.99.100}{2^{50}\left(1.2.3.......50\right)}\)
\(=\frac{51.52.53.....99.100}{2^{50}}\)
\(=\frac{51}{2}\cdot\frac{52}{2}\cdot\frac{53}{2}\cdot.......\cdot\frac{99}{2}\cdot\frac{100}{2}=B\)
Vậy \(A=B\)
Cho A= 1.3.5.7....99
B=(51/2).(52/2).....(100/2)
Chứng tỏ A=B
Dấu gạch ở trên là phần
Ta có:
\(B=\dfrac{51}{2}.\dfrac{52}{2}.\dfrac{53}{2}...\dfrac{100}{2}=\dfrac{51.52.53...100}{2^{50}}\)
\(=\dfrac{\left(51.52.53..100\right)\left(1.2.3.4...50\right)}{2^{50}\left(1.2.3.4...50\right)}\)
\(=\dfrac{1.2.3.4.5.6...100}{\left(2.1\right)\left(2.2\right)\left(2.3\right)...\left(2.50\right)}\)
\(=\dfrac{1.2.3.4.5.6...100}{2.4.6.8.10...100}=\dfrac{\left(1.3...99\right)\left(2.4...100\right)}{2.4.6...100}\)
\(=1.3.5.7.99=A\)
Vậy \(A=B\) (Đpcm)
so sánh 1.3.5.7....99 với d=51/2 .52/2 .53/2 .....100/2
SO Sánh
R= 1.3.5.7...99 và S= 51/2. 52/2. 53/2... 100/2
\(R=1.3.5.7...99\)
\(R=\frac{1.2.3.4.5.6.7.8...99.100}{2.4.6.8...100}\)
\(R=\frac{1.2.3.4.5.6..8...99.100}{\left(2.2.2.2...2\right).\left(1.2.3.4...50\right)}\)
\(R=\frac{51.52.53...100}{2.2.2.2...2}\)
\(R=\frac{51}{2}.\frac{52}{2}.\frac{53}{2}...\frac{100}{2}=S\)
Vậy R = S
So sánh A và B :
\(A=1.3.5.7.....99\)
\(B=\dfrac{51}{2}.\dfrac{52}{2}.\dfrac{53}{2}.....\dfrac{100}{2}\)
Lời giải:
\(A=1.3.5.7...99=\frac{1.2.3.4...99.100}{2.4.6.8.100}=\frac{1.2.3...99.100}{(1.2)(2.2)(3.2)...(50.2)}\)
\(=\frac{1.2.3...99.100}{(1.2.3...50).2^{50}}=\frac{51.52...100}{2^{50}}=\frac{51}{2}.\frac{52}{2}....\frac{100}{2}=B\)
CMR : \(1.3.5.7.....99=\dfrac{51}{2}.\dfrac{52}{2}.\dfrac{53}{2}.....\dfrac{100}{2}\)
Đặt \(A=1.3.5.7...99\)
\(B=\dfrac{51}{2}.\dfrac{52}{2}.\dfrac{53}{2}...\dfrac{100}{2}\)
Ta có:
\(A=1.3.5.7...99\)
\(\Rightarrow A=\dfrac{\left(1.3.5.7...99\right)\left(2.4.6.8...100\right)}{2.4.6.8...100}\)
\(\Rightarrow A=\dfrac{1.2.3.4...100}{2.4.6.8...100}\)
\(\Rightarrow A=\dfrac{1.2.3.4...100}{\left(2.1\right)\left(2.2\right)\left(2.3\right)...\left(2.50\right)}\)
\(\Rightarrow A=\dfrac{\left(1.2.3.4...50\right)\left(51.52.53...100\right)}{\left(1.2.3.4...50\right)\left(2.2.2.2...2\right)}\)
\(\Rightarrow A=\dfrac{51.52.53.54...100}{2.2.2.2...2}\)
\(\Rightarrow A=\dfrac{51}{2}.\dfrac{52}{2}.\dfrac{53}{2}....\dfrac{100}{2}\)
\(\Rightarrow A=B\)
Vậy \(1.3.5.7...99=\dfrac{51}{2}.\dfrac{52}{2}.\dfrac{53}{2}...\dfrac{100}{2}\) (Đpcm)
VT: 1.3.5.7....99=\(\dfrac{(1.3.5.7.....99).\left(2.4.6....100\right)}{2.4.6....100}\)
\(=\dfrac{\left(1.3.5.7.....99\right)\left(2.4.6.....100\right)}{1.2.2.2.2.3.....2.50}\)\(=\dfrac{\left(1.2.3.4.....50\right)\left(51.52.53....100\right)}{\left(1.2.3.4......50\right)\left(2.2.2.2.2....2\right)}\)
\(=\dfrac{51.52.53......100}{2.2.2.2.....2}=\dfrac{51}{2}.\dfrac{52}{2}.\dfrac{53}{2}......\dfrac{100}{2}=VP\left(đpcm\right)\)
so sánh
A= 1.3.5.7....99
B= 51/2 .52/2 . 53/3 .... 100/2
\(A=1.3.5.7...99=\frac{\left(1.3.5.7...99\right)\left(2.4.6...100\right)}{2.4.6...100}=\frac{1.2.3...100}{\left(2.1\right)\left(2.2\right)...\left(2.50\right)}=\frac{\left(1.2.3...50\right)\left(51.52.53....100\right)}{\left(1.2.3...50\right)\left(2.2.2...2\right)}=\frac{51.52.53...100}{2.2...2}=\frac{51}{2}.\frac{52}{2}.\frac{53}{2}...\frac{100}{2}=B\)
Chứng minh
\(1.3.5.7...99=\frac{51}{2}.\frac{52}{2}.....\frac{100}{2}\)
\(1.3.....99=\frac{1.3....99.2.4.6....100}{2.4.6....100}\)
\(=\frac{1.2.3.4.5......99.100}{2^{50}.\left(1.2.3....50\right)}\)
\(=\frac{51.52.53...100}{2.2.2...2}\)
\(=\frac{51}{2}.\frac{52}{2}....\frac{100}{2}\)
\(\Rightarrow1.3...99=\frac{51}{2}.\frac{52}{2}....\frac{100}{2}\left(đpcm\right)\)
Ta có :\(\frac{51}{2}\) . \(\frac{52}{2}\) .... \(\frac{100}{2}\)
=\(\frac{51.52....100}{2.2....2}\)
=\(\frac{51.52....100}{2.2....2}\) . \(\frac{2.4.6....100}{2.4.6....100}\)
=\(\frac{51.52....100.2.4.6...100}{2.4.6...100.2.2...2}\)
=\(\frac{1.2.3.4...100}{2.4.6...100}\)
=\(\frac{\left[1.3.5....99\right].\left[2.4.6...100\right]}{2.4.6...100}\)
=1.3.5...99[đpcm]
Tính ;\(\frac{1.3.5.7...99}{\frac{51}{2}.\frac{52}{2}...\frac{100}{2}}\)