Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
miko hậu đậu
Xem chi tiết
Bảo Lê Duy
Xem chi tiết
nguyen dinh thang
10 tháng 3 2016 lúc 19:50

dễ thôi đáp án bài này là 2

nguyenvankhoa
Xem chi tiết
Mr Lazy
8 tháng 8 2015 lúc 20:02

\(A=\frac{x^4+2016}{x^4+1008}=1+\frac{1008}{x^4+1008}\)

Ta có: \(x^4\ge0\Rightarrow x^4+1008\ge1008\)\(\Rightarrow\frac{1008}{x^4+1008}\le\frac{1008}{1008}=1\)

\(\Rightarrow A\le2\)

Dấu "=" xảy ra khi x = 0.

Vậy GTLN của A là 2.

miko hậu đậu
Xem chi tiết
Trần Tuyết Như
25 tháng 6 2015 lúc 21:06

mk nghĩ giá trị lớn nhất là bằng 2

Ngân Ngô Việt
Xem chi tiết
Minh Phương
2 tháng 3 2017 lúc 21:50

Ta có: \(\dfrac{x^4+2016}{x^4+1008}\) đạt GTNN khi \(x^4+1008\) đạt GTNN; đạt GTNN khi \(x^4+2016\) đạt GTLN

Lại có:

\(x^4\ge0\forall x\\ \Rightarrow x^4+1008\ge1008\forall x\)

\(\Rightarrow\) GTNN của \(x^4+1008=1008\) tại \(x=0\)

Thay \(x=0\) vào \(x^4+2016\), ta có:

\(0^4+2016=2016\)

\(\Rightarrow\) GTLN của: \(\dfrac{x^4+2016}{x^4+1008}=\dfrac{2016}{1008}=2\) tại \(x=0\)

Huy
2 tháng 3 2017 lúc 21:51

Để phần mau nho nhat

Hoàng Thị Ngọc Mai
2 tháng 3 2017 lúc 21:55

Ta có :

\(\dfrac{x^4+2016}{x^4+1008}\) = \(\dfrac{x^4+1008+1008}{x^4+1008}\)

= \(\dfrac{x^4+1008}{x^4+1008}+\dfrac{1008}{x^4+1008}\)

= 1 + \(\dfrac{1008}{x^4+1008}\)

Để \(\dfrac{x^4+2016}{x^4+1008}\) đạt giá trị lớn nhất thì \(\dfrac{1008}{x^4+1008}\) phải đạt giá trị lớn nhất

=> x4 +1008 phải đạt giá trị nhỏ nhất

Vì x4 \(\ge\) 0 với \(\forall\) x

=> x4 + 1008 \(\ge\) 1008 với \(\forall\) x

mà x4 +1008 phải đạt giá trị nhỏ nhất

nên dấu " = " xảy ra khi x4 = 0

=> x = 0

Thay x = 0 vào \(\dfrac{x^4+2016}{x^4+1008}\) ta được :

\(\dfrac{x^4+2016}{x^4+1008}\) = \(\dfrac{2016}{1008}=2\)

Vậy giá trị lớn nhất của \(\dfrac{x^4+2016}{x^4+1008}\) là 2 tại x = 0

Diệu Anh Hoàng
Xem chi tiết
Incursion_03
5 tháng 12 2018 lúc 22:32

ĐK: x khác 0

Từ\(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)

\(\Rightarrow x^2+2+\frac{1}{x^2}+x^2+xy+\frac{y^2}{4}=6+xy\)

\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+\left(x+\frac{y}{2}\right)^2=6+xy\)

Do VT > 0\(\Rightarrow6+xy\ge0\Rightarrow xy\ge6\)
Có A = 2016 + xy > 2016 + 6 = 2022

Incursion_03
29 tháng 1 2019 lúc 16:54

tth : Viết nhầm :V
Đoạn cuối \(6+xy\ge0\Rightarrow xy\ge-6\)

Có A = 2016 + xy > 2016 - 6 = 2010 !!!

Được rồi chứ gì -.- 

Incursion_03
29 tháng 1 2019 lúc 18:16

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+\frac{1}{x}=0\\x+\frac{y}{2}=0\end{cases}}\)

             \(\Leftrightarrow\hept{\begin{cases}x^2=1\\x=-\frac{y}{2}\end{cases}}\)

             \(\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\left(h\right)\hept{\begin{cases}x=-1\\y=2\end{cases}}\)OK ???

Nguyễn Phương Thảo
Xem chi tiết
Tran Le Khanh Linh
27 tháng 4 2020 lúc 19:57

Ta có: \(\hept{\begin{cases}x^2+y^2=1\\\frac{x^4}{a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\end{cases}}\)

\(\Leftrightarrow b\left(a+b\right)x^4+a\left(a+b\right)y^4=ab\left(x^4+2x^2y^2+y^4\right)\)

\(\Leftrightarrow b^2x^4+a^2y^4-2abx^2y^2=0\)

\(\Leftrightarrow\left(bx^2-ay^2\right)^2=0\)

\(\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)

\(\Rightarrow\frac{x^{2016}}{a^{1008}}=\frac{y^{2016}}{b^{1008}}=\frac{1}{\left(a+b\right)^{1008}}\)

\(\Rightarrow\frac{x^{2016}}{a^{1008}}+\frac{y^{2016}}{b^{21008}}=\frac{2}{\left(a+b\right)^{1008}}\)

Khách vãng lai đã xóa
Nguyễn Linh Chi
27 tháng 4 2020 lúc 20:09

Em vào câu hỏi tương tự tham khảo: 

Ta có: \(x^2+y^2=1\Leftrightarrow x^4+2x^2y^2+y^4=1\)

Khi đó: \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{x^4+2x^2y^2+y^4}{a+b}\)

<=> \(\left(a+b\right)\left(\frac{x^4}{a}+\frac{y^4}{b}\right)=x^4+2x^2y^2+y^4\)

<=> \(\frac{b}{a}x^4+\frac{a}{b}y^4=2x^2y^2\)

<=> \(\frac{x^4}{a^2}+\frac{y^4}{b^2}-\frac{2x^2y^2}{ab}=0\)

<=> \(\left(\frac{x^2}{a}-\frac{y^2}{b}\right)^2=0\)

<=> \(\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)( dãy tỉ số bằng nhau)

Khi đó: \(\frac{x^{2016}}{a^{1008}}+\frac{y^{2016}}{b^{1008}}=2\frac{x^{2016}}{a^{1008}}=\frac{2}{\left(a+b\right)^{1008}}\)

Khách vãng lai đã xóa
Edogawa Conan
Xem chi tiết
Nguyễn Vũ Tuấn Linh
27 tháng 12 2016 lúc 18:55

Là:1 sorry!!!

Nguyễn Vũ Tuấn Linh
27 tháng 12 2016 lúc 18:52

tôi cũng hỏi nên ko biết trả lời

sorry!!!

Nguyễn Vũ Tuấn Linh
27 tháng 12 2016 lúc 18:54

Là:0

chắc chắn 100%

Vuong dang do viet
Xem chi tiết