Tìm y \(y+y\times\frac{1}{3}\div\frac{2}{9}+y\div\frac{2}{7}=252\)
Tìm y,biết:
a,\(y-\frac{1}{3}=\frac{10}{21}\div\frac{15}{28}\)
b,\(\frac{2}{7}\div y=\frac{10}{21}\times\frac{9}{14}\)
\(\frac{2}{7}:y=\frac{10}{21}.\frac{9}{14}\)
\(\frac{2}{7}:y=\frac{15}{49}\)
\(y=\frac{2}{7}:\frac{15}{49}\)
\(y=\frac{2}{7}.\frac{49}{15}\)
\(y=\frac{14}{15}\)
\(y-\frac{1}{3}=\frac{10}{21}:\frac{15}{28}\)
\(y-\frac{1}{3}=\frac{10}{21}.\frac{28}{15}\)
\(y-\frac{1}{3}=\frac{8}{9}\)
\(y=\frac{8}{9}+\frac{1}{3}\)
\(y=\frac{8}{9}+\frac{3}{9}\)
\(y=\frac{11}{9}\)
a) Ta có : \(y-\frac{1}{3}=\frac{10}{21}\div\frac{15}{28}\)
\(\Rightarrow\) \(y-\frac{1}{3}=\frac{8}{9}\)
\(\Rightarrow\) \(y\) \(=\frac{8}{9}+\frac{1}{3}\)
\(\Rightarrow\) \(y\) \(=\frac{11}{9}\)
Vậy \(y=\frac{11}{9}\)
b) Ta có : \(\frac{2}{7}\div y=\frac{10}{21}\times\frac{9}{14}\)
\(\Rightarrow\) \(\frac{2}{7}\div y=\frac{15}{49}\)
\(\Rightarrow\) \(y=\frac{2}{7}\div\frac{15}{49}\)
\(\Rightarrow\) \(y=\frac{14}{15}\)
Vậy \(y=\frac{14}{15}\)
Cbht !!!
a) Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{y-x}{3-2}=\frac{14}{1}=14\)
=> \(\begin{cases}x=28\\y=42\end{cases}\)
b) Từ 2x = 7y => \(\frac{2x}{14}=\frac{7y}{14}\Rightarrow\frac{x}{7}=\frac{y}{2}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{x}{7}=\frac{y}{2}=\frac{x+y}{7+2}=\frac{36}{9}=4\)
=> \(\begin{cases}x=28\\y=8\end{cases}\)
c) Từ \(\frac{x}{y}=\frac{3}{7}\Rightarrow\frac{x}{7}=\frac{y}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{x}{7}=\frac{y}{3}=\frac{y-x}{3-7}=\frac{20}{-4}=-5\)
=> \(\begin{cases}x=-35\\y=-15\end{cases}\)
d) Đặt \(\frac{x}{2}=\frac{y}{3}=k\Rightarrow\begin{cases}x=2k\\y=3k\end{cases}\)
Vì xy = 24 => 2k.3k = 24 => 6k2 = 24 => k2 = 4 => k = \(\pm\) 2
Với k = 2 => \(\begin{cases}x=4\\y=6\end{cases}\)
Với k = -2 => \(\begin{cases}x=-4\\y=-6\end{cases}\)
Rút gọn rồi tính giá trị của biểu thức
\(\sqrt{\frac{\sqrt{a}-1}{\sqrt{b}+1}}\div\sqrt{\frac{\sqrt{b}-1}{\sqrt{a}+1}}vớia=7,25;b=3,25\)
\(\frac{a-b}{\sqrt{a\times\left(a+2\times b\right)+b^2}}\div\sqrt{\frac{\left(a-b\right)^2}{a\times\left(a+b\right)}}vớia>b>0và\frac{a}{b}=\frac{9}{7}\)
\(\frac{x-1}{\sqrt{y}-1}\times\sqrt{\frac{\left(y-2\times\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}vớix=\frac{-1}{2};y=121\); giúp mk vs
tính bằng cách thuận tiện
a. \(\frac{1}{2}\times\frac{2}{3}\div\frac{4}{3}\times\frac{4}{5}\div\frac{6}{5}\times\frac{6}{7}\div\frac{7}{8}\times\frac{8}{9}\div\frac{10}{9}\)
b.\(\frac{27}{49}\times\frac{49}{50}\times\frac{15}{51}\times(\frac{5}{10}-\frac{1}{2})\)
(7x6=5+2+6x7) =
Bài 3:
B= \(\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)\times\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right]\div\frac{\sqrt{x}^3+y\sqrt{x}+x\sqrt{y}+\sqrt{y}^3}{\sqrt{x^3y}+\sqrt{xy^3}}\)
a)Tìm ĐKXĐ
b)Rút gọn
c)Tìm x,y để B min
Tìm y
y+yx\(\frac{1}{3}\):\(\frac{2}{9}\)+y:\(\frac{2}{7}\)=252
\(x^3+3x^2+3x+1+y^3+3y^3+3y+1+x+y+2=0\)
\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+x+y+2=0\)
\(\Leftrightarrow\left(x+y+2\right)\left(\left(x+1\right)^2+\left(y+1\right)^2-\left(x+1\right)\left(y+1\right)\right)+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left(\left(x+1\right)^2+\left(y+1\right)^2-\left(x+1\right)\left(y+1\right)+1\right)=0\)
\(\Leftrightarrow x+y+2=0\)
(phần trong ngoặc \(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\frac{\left(y+1\right)^2}{4}+\frac{3\left(y+1\right)^2}{4}+1\)
\(=\left(x+1-\frac{y+1}{4}\right)^2+\frac{3\left(y+1\right)^2}{4}+1\) luôn dương)
\(\Rightarrow x+y=-2\)
Mà \(xy>0\Rightarrow\left\{{}\begin{matrix}x< 0\\y< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-x>0\\-y>0\end{matrix}\right.\)
Ta có: \(\frac{1}{-x}+\frac{1}{-y}\ge\frac{4}{-\left(x+y\right)}=2\) \(\Leftrightarrow\frac{1}{x}+\frac{1}{y}\le-2\) (đpcm)
Dấu "=" xảy ra khi và chỉ khi \(x=y=-1\)
2/ \(x;y;z\ne0\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{1}{z}-\frac{1}{x+y+z}=0\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{xz+yz+z^2}=0\)
\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{xz+yz+z^2}\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(\frac{xy+yz+xz+z^2}{xyz\left(x+y+z\right)}\right)=0\)
\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\) dù trường hợp nào thì thay vào ta đều có \(B=0\)
3/ \(\Leftrightarrow mx-2x+my-y-1=0\)
\(\Leftrightarrow m\left(x+y\right)-\left(2x+y+1\right)=0\)
Gọi \(A\left(x_0;y_0\right)\) là điểm cố định mà d đi qua
\(\Leftrightarrow\left\{{}\begin{matrix}x_0+y_0=0\\2x_0+y_0+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=1\end{matrix}\right.\)
Vậy d luôn đi qua \(A\left(-1;1\right)\) với mọi m
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\) . Tìm Min \(\sqrt{\frac{2x^{3}+3y^{2}}{x+4y}}+\sqrt{\frac{2y^{3}+3z^{2}}{y+4z}}+\sqrt{\frac{2z^{3}+3x^{2}}{z+4x}}\)
Tìm x,y,z biết:
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\) và x+y+z=35
Ta có : \(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{y}{5}\)
Quy đòng : \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y+z}{8+12+15}=\frac{35}{35}=1\)
\(\Leftrightarrow\begin{cases}\frac{x}{8}=1\Rightarrow x=1.8=8\\\frac{y}{12}=1\Rightarrow y=1.12=12\\\frac{z}{15}=1\Rightarrow z=1.15=15\end{cases}\)
Vậy x = 8 ; y = 12 ; z = 15
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
x + y + z = 35 => \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\Rightarrow\frac{x+y+z}{8+12+15}=\frac{35}{35}=1\)
=> x = 1 . 8 = 8
y = 1 . 12 = 12
z = 1 . 15 = 15
=> tự KL
Theo đề bài, ta có:
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\) và x+y+z=35
\(\Rightarrow\frac{x}{8}=\frac{y}{12};\frac{y}{12}=\frac{z}{15}\) và x+y+z=35
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y+z}{8+12+15}=\frac{35}{35}=1\)
\(\frac{x}{8}=1.8=8\)\(\frac{y}{12}=1.12=12\)\(\frac{z}{15}=1.15=15\)Vậy x=8,y=12,z=15
^...^ ^_^