cho A= n+9/ n-6 với n thuộc z
tìm n thuộc Z để
a) A là phân số tối giản
b) A có thể rút gọn cho số nào ?
c) A thuộc Z
Cho biểu thức A= n+5 trên n+3 với n thuộc z
a)tìm n để A bằng 1phần2
b)tìm n thuộc z để A nhận giá trị nguyên
c)tìm n thuộc z để A rút gọn được
e)tìm n để A là phân số tối giản
\(B.\) Để n thuộc z để A nhận giá trị nguyên thì
\(n+5\)\(⋮n+3\)
\(\Rightarrow\)\(\left(n+3\right)+2⋮n+3\)
\(\Rightarrow\)\(n+3\inƯ_{\left(2\right)}\)\(=\left\{\pm1;\pm2\right\}\)
\(n+3=1\Rightarrow x=1-3=-2\)\(\in Z\)\(n+3=-1\Rightarrow x=\left(-1\right)-3=-4\)\(\in Z\)\(n+3=2\Rightarrow x=2-3=-1\in Z\)\(n+3=-2\Rightarrow x=\left(-2\right)-3=-5\in Z\)Vậy x \(\in\){ -2 ; -4 ; -1 ; -5}.
\(A=\frac{2n-5}{n+3}\) (n THUỘC Z)
a,Tìm n để A là phân số
b,Tìm n thuộc Z để A có giá trị là số nguyên
c,Tìm n thuộc Z để A rút gọn được
d,Tìm n thuộc Z để A là phân số tối giản
a) Để A là phân số thì n + 3 khác 0 => n khác -3 thì A là phân số
b) Để A nguyên thì 2n - 5 chia hết cho n + 3
=> 2n + 6 - 11 chia hết cho n + 3
=> 2.(n + 3) - 11 chia hết cho n + 3
Do 2.(n + 3) chia hết cho n + 3 => 11 chia hết cho n + 3
=> n + 3 thuộc {1 ; -1; 11; -11}
=> n thuộc {-2; -4; 8; -14}
c) Gọi d là ước nguyên tố chung của 2n - 5 và n + 3
=> 2n - 5 chia hết cho d; n + 3 chia hết cho d
=> 2n - 5 chia hết cho d; 2.(n + 3) chia hết cho d
=> 2n - 5 chia hết cho d, 2n + 6 chia hết cho d
=> (2n + 6) - (2n - 5) chia hết cho d
=> 2n + 6 - 2n + 5 chia hết cho d
=> 11 chia hết cho d
=> d thuộc {1 ; 11}
Mà d nguyên tố => d = 11
Với d = 11 thì 2n - 5 chia hết cho 11, n + 3 chia hết cho 11
=> 2n - 5 + 11 chia hết cho 11 => 2n + 6 chia hết cho 11
=> 2.(n + 3) chia hết cho 11
Do (2,11)=1 => n + 3 chia hết cho 11
=> n = 11k + 8 ( k thuộc Z)
Vậy với n = 11k + 8 ( k thuộc Z) thì A rút gọn được
Với n khác 11k + 8 (k thuộc Z) thì A tối giản
a) Để A là phân số thì n + 3 khác 0 => n khác -3 thì A là phân số
b) Để A nguyên thì 2n - 5 chia hết cho n + 3
=> 2n + 6 - 11 chia hết cho n + 3
=> 2.(n + 3) - 11 chia hết cho n + 3
Do 2.(n + 3) chia hết cho n + 3 => 11 chia hết cho n + 3
=> n + 3 thuộc {1 ; -1; 11; -11}
=> n thuộc {-2; -4; 8; -14}
c) Gọi d là ước nguyên tố chung của 2n - 5 và n + 3
=> 2n - 5 chia hết cho d; n + 3 chia hết cho d
=> 2n - 5 chia hết cho d; 2.(n + 3) chia hết cho d
=> 2n - 5 chia hết cho d, 2n + 6 chia hết cho d
=> (2n + 6) - (2n - 5) chia hết cho d
=> 2n + 6 - 2n + 5 chia hết cho d
=> 11 chia hết cho d
=> d thuộc {1 ; 11}
Mà d nguyên tố => d = 11
Với d = 11 thì 2n - 5 chia hết cho 11, n + 3 chia hết cho 11
=> 2n - 5 + 11 chia hết cho 11 => 2n + 6 chia hết cho 11
=> 2.(n + 3) chia hết cho 11
Do (2,11)=1 => n + 3 chia hết cho 11
=> n = 11k + 8 ( k thuộc Z)
Vậy với n = 11k + 8 ( k thuộc Z) thì A rút gọn được
Với n khác 11k + 8 (k thuộc Z) thì A tối giản
Bài 1 Cho phân số A=\(\frac{n+9}{n-6}\)
a) Tìm n thuộc Z để A thuộc Z
b) Với n thuộc Z; n>6. Tìm n để A là số tự nhiên
Với n thuộc Z; n>6. Tìm n để A là số tối giản
Cho phân số B=\(\frac{-10}{2n+1}\)với n thuộc z
a, Tìm n để phân số B thuộc z
b, Tìm n để phân số rút gọn được
c, tìm n để phân số B tối giản
Cho phân số A=5n+2/2n+7 (n thuộc z)
a)Tìm n thuộc z để A có giá trị bằng 7/9
b)Tìm n thuộc z để A có giá trị là số nguyên
c)Có bao nhiêu số nguyên dương n bé hơn 2016 để A là phân số tối giản ?
cho A=n+9/n+6 (n thuộc Z) tìm n để A là phân số tối giản
cho biểu thức a=5/n+2
a. Tìm n để A là phân số
b. Tìm n thuộc z để A thuộc z
c Tìm n thuộc z để a là phân số tối giản
bài này dễ mà
a, Để a là phân số thì
\(n+2\ne0\)\(\Leftrightarrow n\ne-2\)
b, Để \(A\in Z\)\(\Rightarrow5⋮n+2\)
Hay \(n+2\inƯ\left(5\right)\)
Ta có các \(Ư\left(5\right)\in\left\{1;-1;5;-5\right\}\)
Vậy có các trường hợp :
n + 2 = 1 => n = -1
n + 2 = -1 => n = -3
n + 2 = 5 => n = 3
n + 2 = -5 => n = -7
Vậy để \(A\in Z\Rightarrow n\in\left\{-1;-3;3;-7\right\}\)
Cho phân số A=6/n+2,n thuộc Z
a)Với giá trị của n thì A rút gọn được
b)Tìm n để A thuộc Z
a) 6/n + 2 rút gọn được
UCLN(6 , n + 2) > 1
Vậy khi UCLN( 6 , n + 2) thuộc U(6) = {-6 ; -3; -2 ; - 1 ; 1 ; 2 ; 3 ; 6}
b) 6 chia hết cho n + 2
n + 2 thuộc U(6) = {-6 ; -3 ; -2 ; - 1 ; 1; 2; 3; ;6}
Vậy n thuộc {-8 ; -5 ; -4 ; -3 ; -1 ; 0 ; 1 ; 4}
Cho phân số: n+9/n-6 ( n thuộc Z; n>6)
a)Tìm n để phân số có giá trị là số tự nhiên
b) Tìm n để phân số là tối giản