Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Nguyên Hạo
Xem chi tiết
Hạo LÊ
Xem chi tiết
Lê Nguyên Hạo
8 tháng 9 2016 lúc 19:09

Hoàng Lê Bảo NgọcTrần Việt LinhNguyễn Huy TúNguyễn Huy ThắngSilver bulletPhương AnĐinh Tuấn ViệtNguyễn Thế BảoNguyễn Thị Anh

Ken Tom Trần
8 tháng 9 2016 lúc 19:11

=(7k+3+88k)(60k^3+\(\frac{4}{k}\))

=(95k+3)(60k^3+\(\frac{4}{k}\))

phần còn lại tự lm nha

ronaldo
8 tháng 9 2016 lúc 21:12

2121212121

 

MiMi VN
Xem chi tiết
Xem chi tiết
Phạm
18 tháng 12 2019 lúc 21:41

vãi ngu 

mày làm đề như cc

đéo hỉu

Khách vãng lai đã xóa
Nguyễn Ngô Đại Lâm
18 tháng 12 2019 lúc 21:53

ko ông lỗ 7k

Khách vãng lai đã xóa
doan van luu
Xem chi tiết
tran huu chi vi
12 tháng 2 2016 lúc 14:53

ban da thuc hien sai 1 phep toan.

tran huu chi vi
12 tháng 2 2016 lúc 14:58

bai toan sai o cho 9k la so tien mat nen 9k +9k +9k -25 = 2k la dung roi

Trần Thành Nhân
7 tháng 10 2017 lúc 9:53

Chủ quán đã nhận 25k

4 người ăn còn lại 5k 

mỗi người 1k  

người không trả tiền 2k 

2k+1k+1k+1k+25k=30k

Linh Đàm
Xem chi tiết
Trần Thị Loan
28 tháng 8 2015 lúc 19:10

Áp dụng t/c của dãy tỉ số bằng nhau ta có \(\frac{\left(a^{2k}+b^{2k}\right)}{c^{2k}+d^{2k}}=\frac{a^{2k}-b^{2k}}{c^{2k}-d^{2k}}=\frac{\left(a^{2k}+b^{2k}\right)+\left(a^{2k}-b^{2k}\right)}{\left(c^{2k}+d^{2k}\right)+\left(c^{2k}-d^{2k}\right)}=\frac{\left(a^{2k}+b^{2k}\right)-\left(a^{2k}-b^{2k}\right)}{\left(c^{2k}+d^{2k}\right)-\left(c^{2k}-d^{2k}\right)}\)

=> \(\frac{a^{2k}}{c^{2k}}=\frac{b^{2k}}{d^{2k}}\) => \(\left(\frac{a}{c}\right)^{2k}=\left(\frac{b}{d}\right)^{2k}\) => \(\frac{a}{c}=\frac{b}{d}\) hoặc \(\frac{a}{c}=-\frac{b}{d}\) ( do số mũ 2k chẵn)

=> \(\frac{a}{b}=\frac{c}{d}\) hoặc \(\frac{a}{b}=-\frac{c}{d}\)

A little thing for a lit...
Xem chi tiết
Xyz OLM
26 tháng 10 2020 lúc 13:17

c) x2 + 9x = 10

x2 + 9x - 10 = 0

=> x2 - x + 10x - 10 = 0

=> x(x - 1) + 10(x - 1) = 0

=> (x + 10)(x - 1) = 0

=> \(\orbr{\begin{cases}x=-10\\x=1\end{cases}}\)

d) 2x2 + 9x = 35

=> 2x2 + 9x - 35 = 0

=> 2x2 + 14x - 5x - 35 = 0

=> 2x(x + 7) - 5(x + 7) = 0

=> (x + 7)(2x - 5) = 0

=> \(\orbr{\begin{cases}x=-7\\x=\frac{5}{3}\end{cases}}\)

(x2 - 2x - 1)2 - 5(x2 - 2x - 1) - 14 = 0

=> (x2 - 2x - 1)2 + 2(x2 - 2x - 1) - 7(x2 - 2x - 1) - 14 = 0

=> (x2 - 2x - 1)(x2 - 2x + 1) - 7(x2 - 2x + 1) = 0

=> (x2 - 2x + 1)(x2 - 2x - 8) = 0

=> (x - 1)2 (x - 4)(x + 2) = 0

=> x = 1 hoặc x = 4 hoặc x = -2

e) (2k2 + 5k + 1)2 - 12(2k2 + 5k + 1) + 32 = 0

=> (2k2 + 5x + 1)2 - 4(2k2 + 5k + 1) - 8(2k2 + 5k + 1) + 32 = 0

=> (2k2 + 5k + 1)(2k2 + 5k - 3) - 8(2k2 + 5k - 3) = 0

=> (2k2 + 5k - 3)(2k2 + 5k - 7) = 0

=> (2k2 + 6k - k - 3)(2k2 - 2x + 7k - 7) = 0

=> (k + 3)(2k - 1)(k - 1)(2k + 7) = 0

=> k = -3 hoặc k = 1/2 hoặc k = 1 hoặc k = -7/2

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
26 tháng 10 2020 lúc 14:30

1.x2 + 6x = 0 < như này nhỉ ? >

⇔ x( x + 6 ) = 0

⇔ x = 0 hoặc x + 6 = 0

⇔ x = 0 hoặc x = -6

2. x2 - 25x + 250 = 0

⇔ ( x2 - 25x + 625/4 ) + 375/4 = 0

⇔ ( x - 25/2 )2 = -375/4 ( vô lí )

=> Phương trình vô nghiệm

3. x2 + 9x = 10

⇔ x2 + 9x - 10 = 0

⇔ x2 - x + 10x - 10 = 0

⇔ x( x - 1 ) + 10( x - 1 ) = 0

⇔ ( x - 1 )( x + 10 ) = 0

⇔ x - 1 = 0 hoặc x + 10 = 0

⇔ x = 1 hoặc x = -10

4. 2x2 + 9x = 35

⇔ 2x2 + 9x - 35 = 0

⇔ 2x2 + 14x - 5x - 35 = 0

⇔ 2x( x + 7 ) - 5( x + 7 ) = 0

⇔ ( x + 7 )( 2x - 5 ) = 0

⇔ x + 7 = 0 hoặc 2x - 5 = 0

⇔ x = -7 hoặc x = 5/2

5. ( x2 - 2x - 1 )2 - 5( x2 - 2x - 1 ) - 14 = 0

Đặt t = x2 - 2x - 1

bthuc ⇔ t2 - 5t - 14 = 0

          ⇔ t2 - 7t + 2t - 14 = 0

          ⇔ t( t - 7 ) + 2( t - 7 ) = 0

          ⇔ ( t - 7 )( t + 2 ) = 0

          ⇔ ( x2 - 2x - 1 - 7 )( x2 - 2x - 1 + 2 ) = 0

          ⇔ ( x2 - 4x + 2x - 8 )( x - 1 )2 = 0

          ⇔ ( x - 4 )( x + 2 )( x - 1 )2 = 0

          ⇔ x - 4 = 0 hoặc x + 2 = 0 hoặc x - 1 = 0

          ⇔ x = 4 hoặc x = -2 hoặc x = 1

6. ( 2k2 + 5k + 1 )2 - 12( 2k2 + 5k + 1 ) + 32 = 0

Đặt t = 2k2 + 5k + 1

bthuc ⇔ t2 - 12t + 32 = 0

          ⇔ t2 - 8t - 4t + 32 = 0

          ⇔ t( t - 8 ) - 4( t - 8 ) = 0

          ⇔ ( t - 8 )( t - 4 ) = 0

          ⇔ ( 2k2 + 5k + 1 - 8 )( 2k2 + 5k + 1 - 4 ) = 0

          ⇔ ( 2k2 - 2k + 7k - 7 )( 2k2 - k + 6k - 3 ) = 0

          ⇔ ( k - 1 )( 2k + 7 )( 2k - 1 )( k + 3 ) = 0

          ⇔ k = 1 hoặc k = -7/2 hoặc k = 1/2 hoặc k = -3

Khách vãng lai đã xóa
Takahashi Ayako
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 8 2017 lúc 5:33