Tìm x để B có giá trị nhỏ nhất: B=\(\frac{x^2-2x+2011}{x^2}\)với x>0
tìm x>0 để \(B=\frac{x^2-2x+2011}{x^2}\) đạt giá trị nhỏ nhất
Ta có \(A=\frac{x^2-2x+2011}{x^2}\)
\(=\frac{x^2}{x^2}-\frac{2x}{x^2}+\frac{2011}{x^2}\)
\(=1-\frac{2}{x}+\frac{2011}{x^2}\)
Đặt \(\frac{1}{x}=y\)ta có:
\(A=1-2y+2011y^2\)
\(A=2011y^2-2y+1\)
\(A=2011\left(y^2-\frac{2}{2011}y+\frac{2}{2011}\right)\)
\(=2011\left(y^2-2\times y\times\frac{1}{2011}+\frac{1}{2011^2}-\frac{1}{2011^2}+\frac{1}{2011}\right)\)
\(=2011\left(\left(y-\frac{1}{2011}\right)^2\right)+\frac{2010}{2011^2}\)
\(=2011\left(y-\frac{1}{2011}\right)^2+\frac{2010}{2011}\)
Vì (y-\(\frac{1}{2011}\))\(^2\)>=0
\(\Rightarrow2011\left(y-\frac{1}{2011}\right)^2+\frac{2010}{2011}\)
Hay \(A>=\frac{2010}{2011}\)
cho biểu thức \(A=\frac{^{x^2}-2x+2011}{x^2}\) với x>0
tìm giá trị của x để biểu thức A đạt giá trị nhỏ nhất. tìm giá trị nhỏ nhất đó
bài này ta có thể giải theo 2 cách
ta có A = \(\frac{x^2-2x+2011}{x^2}\)
= \(\frac{x^2}{x^2}\)- \(\frac{2x}{x^2}\)+ \(\frac{2011}{x^2}\)
= 1 - \(\frac{2}{x}\)+ \(\frac{2011}{x^2}\)
đặt \(\frac{1}{x}\)= y ta có
A= 1- 2y + 2011y^2
cách 1 :
A = 2011y^2 - 2y + 1
= 2011 ( y^2 - \(\frac{2}{2011}y\)+ \(\frac{1}{2011}\))
= 2011( y^2 - 2.y.\(\frac{1}{2011}\)+ \(\frac{1}{2011^2}\)- \(\frac{1}{2011^2}\) + \(\frac{1}{2011}\))
= 2011 \(\left(\left(y-\frac{1}{2011}\right)^2\right)+\frac{2010}{2011^2}\)
= 2011\(\left(y-\frac{1}{2011}\right)^2\)+ \(\frac{2010}{2011}\)
vì ( y - \(\frac{1}{2011}\)) 2>=0
=> 2011\(\left(y-\frac{1}{2011}\right)^2\)+ \(\frac{2010}{2011}\)> = \(\frac{2010}{2011}\)
hay A >=\(\frac{2010}{2011}\)
cách 2
A = 2011y^2 - 2y + 1
= ( \(\sqrt{2011y^2}\)) - 2 . \(\sqrt{2011y}\). \(\frac{1}{\sqrt{2011}}\)+ \(\frac{1}{2011}\)+ \(\frac{2010}{2011}\)
= \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)+ \(\frac{2010}{2011}\)
vì \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)> =0
nên \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)+ \(\frac{2010}{2011}\)>= \(\frac{2010}{2011}\)
hay A >= \(\frac{2010}{2011}\)
Tìm x để B có giá trị nhỏ nhất : \(B=\frac{x^2-2x+2011}{x^2}\)với x > 0
Ta có :
\(B=\frac{x^2-2x+2011}{x^2}\)
\(B=\frac{x^2}{x^2}-\frac{2x}{x^2}+\frac{2011}{x^2}\)
\(B=1-\frac{2}{x}+\frac{2011}{x^2}\)
\(B=\left(\frac{\sqrt{2011}^2}{x^2}-\frac{2}{x}+\frac{1}{2011}\right)+\frac{2010}{2011}\)
\(B=\left(\frac{\sqrt{2011}}{x}-\frac{1}{\sqrt{2011}}\right)^2+\frac{2010}{2011}\)
Mà : \(\left(\frac{\sqrt{2011}}{x}-\frac{1}{\sqrt{2011}}\right)^2\ge0\forall x\)
\(\Rightarrow B\ge\frac{2010}{2011}\)
Dấu "=" xảy ra khi :
\(\frac{\sqrt{2011}}{x}-\frac{1}{\sqrt{2011}}=0\)
\(\Leftrightarrow x=2\sqrt{2011}\)
Vậy \(MinB=\frac{2010}{2011}\Leftrightarrow x=2\sqrt{2011}\)
giúp mình với
cho biểu thức A=\(\frac{x^2-2x+2011}{x^2}\)với x>0.Tìm giá trị của x để A đạt giá trị nhỏ nhất.Tìm giá trị nhỏ nhất đó
mình đg cần gấp ạ!!
tìm giá trị nhỏ nhất của biểu thức \(A=\frac{x^2-2x+2011}{x^2}\) với x > 0
B= \(\frac{x^2+x-2}{x^2+x+2}\)
a) Tìm x để B có giá trị nhỏ nhất . Tìm giá trị nhỏ nhất ấy.
b) Tìm x để biểu thức có giá trị nguyên.
Cho M =3x^2y+4x^2y+\(\frac{1}{2}\)+x^2y
1)tìm cặp số nguyên (x;y) để M=240
2)chứng minh M và 2x^2y^3 cung dấu với mọi x;y khác 0
3) C/M M và -2x^4 khác dấu với mọi x khác 0
4) C/M 2x^4y^3 và -4xy ít nhất có một đơn thức có giá trị âm với mọi x,y khác 0
5)C/M M-2x^4y^3 và -4xy ít nhất có 1 đơn thức có giá trị dương với mọi x,y khác 0
6)tìm số h để kx^2y^2 và 2My nhận giá trị
a) âm với mọi x,y khác 0
b) dương vói mọi x,y khác 0
7) tìm giá trị nhỏ nhất của M+2
8) tìm giá trị lớn nhất của -M+2
9)tìm số tự nhiên A biêt \(\frac{15}{6}x^2y+\frac{15}{12}x^2y+\frac{15}{30}x^2y+.......+\frac{15}{a-\left(a+1\right)}\)
Câu 1, Chứng minh rằng:
a, \(\frac{2011^3+11^3}{2011^3+2000^3}=\frac{2011+11}{2011+2000}\)
b, Nếu m,n là các số tụ nhiên thỏa mãn: \(4m^2+m=5n^2+n\) thì \(m-n\)và \(5m+5n+1\)đều là số cính phương.
Câu 2: a, Tính giá trị biểu thức
A=\(\left|x^2+y^2+5+2x-4y\right|-\left|-\left(x+y-1\right)^2\right|+2xy\)với \(x=2^{2011};y=16^{503}\)
b, Tìm x để B có giá trị nhỏ nhất \(B=\frac{x^2-2x+2011}{x^2}\)với x>0
\(\frac{2011^3+11^3}{2011^3+2000^3}=\frac{\left(2011+11\right)\left(2011^2+11^2-11.2011\right)}{\left(2011+200\right)\left(2011^2+2000^2-2000.2011\right)}\)
Cần chứng minh \(2011^2+11^2-2011.11=2011^2+2000^2-2000.2011\)
Điều này không khó.
\(B=1-\frac{2}{x}+\frac{2011}{x^2}=2011t^2-2t+1\text{ (với }t=\frac{1}{x}\text{)}\)
->Gộp hằng đẳng thức....
\(A=\left|\left(x+1\right)^2+\left(y-2\right)^2\right|-\left(x+y-1\right)^2+2xy\)
\(=\left(x+1\right)^2+\left(y-2\right)^2-\left(x^2+y^2-2x-2y+2xy+1\right)+2xy\)
\(=4x-2y+4\)
thay số.Lưu ý: \(y=16^{503}=\left(2^4\right)^{503}=2^{2012}\)
1,cho biểu thức C=\(\left(\frac{x}{x+2}+\frac{5x-12}{5x^2-12x}-\frac{8}{5x^2+10x}\right):\frac{x^2-2x+2}{x^2-x-6}\)
a,tìm điều kiện để giá trị của C được xác định
b,rút gọn biểu thức
c,tìm giá trị của x để giá trị của C nhỏ nhất.Xác định giá trị nhỏ nhất đó
d,tìm các giá trị nguyên của x để C có giá trị nguyên