Tìm y biết : (2014+y)x(200-y)=235424
X-y/3=x+y/13=xay/200
X+y/2014=xay/2015=x-y/2016
Tìm x biết : x + y/ 2012 = x. y /2013 = x - y /2014 .
x-y/2014=x+y/2012=x-y+x+y/2014+2012=2x/2026=x/1013 (theo tc dãy tỉ số bằng nhau)
ta lại có: x+y/2012=x.y/2013=x/2013 (chứng minh trên) => y=1
x-y/2014=x.y/2013=x/2013 => x-1/2014=x/2013
thì (x-1).2013=2014x
2013x-2013=2014x
-1x=2013 thì x=-2013
Tìm y biết: y : 0,04 + y x 3/2 - y x 6,5 = 2014
Tìm y biết : y : 0,04 + y x 3/2 - y x 6,5 = 2014
Tìm y, biết:
y:0,04+y x 3/2 - y x 6,5=2014
Ta có với x,y nguyên thì :
\(\left\{{}\begin{matrix}x^2\equiv0,1,4\left(mod8\right)\\y^2\equiv0,1,4\left(mod8\right)\end{matrix}\right.\)
\(\Rightarrow x^2+y^2\equiv0,1,2,5\left(mod8\right)\)
Mà : \(x^2+y^2=2014\equiv6\left(mod8\right)\) ( giả thiết )
Nên không tồn tại x,y thỏa mãn đề.
Tìm Y biết: y : 0,04 + y x 3/2 - y x 6,5 = 2014
Tìm x;y;z;biết
x-y+2013:y-z=-2014:z+x=2015
Tìm x,y,z biết : \(x^2+y^2+z^2=xy+yz+zx\)và \(x^{2014}+y^{2014}+z^{2014}=3\)Tính P =\(x^{25}+y^4+z^{2015}\)
\(x^2+y^2+z^2=xy+yz+zx\)
\(2.\left(x^2+y^2+z^2\right)=2.\left(xy+yz+zx\right)\)
\(\Rightarrow2.\left(x^2+y^2+z^2\right)-2xy-2yz-2zx=0\)
\(\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)
\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
Ta có: \(VT\ge0\forall x;y;z\)( tự c/m. nếu b ko c/m được thì bảo mình )
Mà \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}\Leftrightarrow}}\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}\Leftrightarrow x=y=z}\)
Có \(x^{2014}+y^{2014}+z^{2014}=3\)
\(\Rightarrow3.x^{2014}=3\)
\(\Rightarrow x^{2014}=1\)
\(\Rightarrow x=1\)
\(\Rightarrow x=y=z=1\)
Có: \(P=x^{25}+y^4+z^{2015}\)
\(\Rightarrow P=1^{25}+1^4+1^{2015}\)
\(P=1+1+1\)
\(P=3\)
Vậy \(P=3\)
Tham khảo nhé~
Ta có: x2+y2+z2=xy+yz+zx
<=>2x2+2y2+2z2=2xy+2yz+2zx
<=>2x2+2y2+2z2-2xy-2yz-2zx=0
<=>(x2-2xy+y2)+(y2-2yz+z2)+(z2-2zx+x2)=0
<=>(x-y)2+(y-z)2+(z-x)2=0
Vì \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(z-x\right)^2\ge0\end{cases}\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0}\)
=>\(\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}\Rightarrow x=y=z}\)
=>x2014=y2014=z2014
Lại có: x2014+y2014+z2014 = 3
=>3x2014 = 3 => x2014 = 1 => \(x=\pm1\)
=>\(x=y=z=\pm1\)
Thay x,y,z vào P rồi tính
Nhầm.
Tui thiếu trường hợp x=-1
b tham khảo bài của ST nhé