Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hải Linh
Xem chi tiết
Bùi Thị Hà Giang
Xem chi tiết
Jin Air
25 tháng 3 2016 lúc 23:13

x-y/2014=x+y/2012=x-y+x+y/2014+2012=2x/2026=x/1013 (theo tc dãy tỉ số bằng nhau)

ta lại có: x+y/2012=x.y/2013=x/2013 (chứng minh trên) => y=1

x-y/2014=x.y/2013=x/2013 => x-1/2014=x/2013

thì (x-1).2013=2014x

    2013x-2013=2014x

   -1x=2013 thì x=-2013

Hồ Nhật Hoàng Nguyên
Xem chi tiết
Nguyễn Thân Hiển
1 tháng 3 2016 lúc 22:31

dap an 100,7

Nguyễn Thân Hiển
1 tháng 3 2016 lúc 22:33

min cung co giai vang 19

Dương Việt Hà
22 tháng 3 2016 lúc 14:49

100.7   nhé

Akabane Karma
Xem chi tiết
Phạm Tường Nhật
Xem chi tiết
Thành Nghĩa
Xem chi tiết
✿✿❑ĐạT̐®ŋɢย❐✿✿
24 tháng 1 2021 lúc 11:00

Ta có với x,y nguyên thì :

\(\left\{{}\begin{matrix}x^2\equiv0,1,4\left(mod8\right)\\y^2\equiv0,1,4\left(mod8\right)\end{matrix}\right.\)

\(\Rightarrow x^2+y^2\equiv0,1,2,5\left(mod8\right)\)

Mà : \(x^2+y^2=2014\equiv6\left(mod8\right)\) ( giả thiết )

Nên không tồn tại x,y thỏa mãn đề.

Phạm Quỳnh Thương
Xem chi tiết
Hoàng Nữ Linh Đan
Xem chi tiết
Hoàng Bảo Trân
Xem chi tiết
kudo shinichi
3 tháng 11 2018 lúc 18:31

\(x^2+y^2+z^2=xy+yz+zx\)

\(2.\left(x^2+y^2+z^2\right)=2.\left(xy+yz+zx\right)\)

\(\Rightarrow2.\left(x^2+y^2+z^2\right)-2xy-2yz-2zx=0\)

\(\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

Ta có: \(VT\ge0\forall x;y;z\)( tự c/m. nếu b ko c/m được thì bảo mình )

Mà \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}\Leftrightarrow}}\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}\Leftrightarrow x=y=z}\)

Có \(x^{2014}+y^{2014}+z^{2014}=3\)

\(\Rightarrow3.x^{2014}=3\)

\(\Rightarrow x^{2014}=1\)

\(\Rightarrow x=1\)

\(\Rightarrow x=y=z=1\)

Có: \(P=x^{25}+y^4+z^{2015}\)

\(\Rightarrow P=1^{25}+1^4+1^{2015}\)

\(P=1+1+1\)

\(P=3\)

Vậy \(P=3\)

Tham khảo nhé~

ST
3 tháng 11 2018 lúc 18:33

Ta có: x2+y2+z2=xy+yz+zx

<=>2x2+2y2+2z2=2xy+2yz+2zx

<=>2x2+2y2+2z2-2xy-2yz-2zx=0

<=>(x2-2xy+y2)+(y2-2yz+z2)+(z2-2zx+x2)=0

<=>(x-y)2+(y-z)2+(z-x)2=0

Vì \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(z-x\right)^2\ge0\end{cases}\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0}\)

=>\(\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}\Rightarrow x=y=z}\)

=>x2014=y2014=z2014

Lại có: x2014+y2014+z2014 = 3

=>3x2014 = 3 => x2014 = 1 => \(x=\pm1\)

=>\(x=y=z=\pm1\)

Thay x,y,z vào P rồi tính

kudo shinichi
3 tháng 11 2018 lúc 18:34

Nhầm.

Tui thiếu trường hợp x=-1

b tham khảo bài của  ST nhé