cho a,b,c la 3 canh cua 1 tam giac CMR: A=a/(b+c-a) + b/(a+c-b) + c/(a+b-c) >=3
Cho a,b,c la 3 canh cua tam giac, cmr a^2/b + b^2/c + c^2/a >= a+b+c
\(\frac{a^2}{b}+b\ge2a;\frac{b^2}{c}+c\ge2b;\frac{c^2}{a}+a\ge2c\)(BĐT cô-si)
\(\Rightarrow\frac{a^2}{b}+b+\frac{b^2}{c}+c+\frac{c^2}{a}+a\ge2a+2b+2c\)
\(\Rightarrowđpcm\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
cho a,b,c la 3 canh cua tam giac cmr a/(b+c-a)+b/(a+c-b)+c/(a+b-c) a^2+b^2+c^2
cho a,b,c la 3 canh cua tam giac
tm (a+b-2c)^2+(b+c-2a)^2+(c+a-2b)^2=(a-b)^2+(b-c)^2+(c-a)^2. tam giac ay la tam giac gi
cho a,b,c la do dai 3 canh cua mot tam giac thoa man dieu kien \(\sqrt{a+b-c}+\sqrt{b+c-a}+\sqrt{c+a-b}=\sqrt{a}+\sqrt{b}+\sqrt{c}\)
chung minh a,b,c la 3 canh cua mot tam giac deu
Goi a,b,c la 3 do dai cua 3 canh trong tam giac. Va biet (a+b)(b+c)(a+c)=8abc .Chung minh rang tam giac da cho la tam giac deu
cho a,b,c la 3 canh cua mot tam giac cmr
A=\(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\)
lon hon hoac bang 3
làm ơn giúp tui với
đặt b+c-a=x,a+c-b=y,a+b-c=z thì x,y,z>0 do a,b,c>0
=>x+y+z=a+b+c
có a=(y+z)/2 , b=(z+x)/2 ,c=(x+y)/2
A=(y+z)/2x + (z+x)/2y + (x+y)/2z =1/2[(x/y+y/x)+(y/z+z/y)+(x/z+z/x)
Áp dụng bđt cosi : x/y+y/x >= 2,y/z+z/y >= 2,z/x+x/z >= 2
=>A >= 1/2.6=3 (đpcm)
Dấu "=" xảy ra <=> x=y=z<=>b+c-a=a+c-b=a+b-c<=>a=b=c <=> tam giác đó là tam gíac đều
Áp dụng bđt Cauchy-Schawrz dạng Engel ta có:
A = a^2/ab+ac-a^2 + b^2/ab+bc-b^2 + c^2/ac+bc-c^2
A \(\ge\)(a+b+c)^2/2.(ab+bc+ca)-(a^2+b^2+c^2)
A \(\ge\)a^2+b^2+c^2+2.(ab+bc+ca)/2.(ab+bc+ca)-(a^2+b^2+c^2)
A \(\ge\)2.(ab+bc+ca)-(a^2+b^2+c^2)/2.(ab+bc+ca)-(a^2+b^2+c^2) + 2.(a^2+b^2+c^2)/2.(ab+bc+ca)-(a^2+b^2+c^2)
A \(\ge\)1 + 2.(a^2+b^2+c^2)/2.(a^2+b^2+c^2)-(a^2+b^2+c^2)
A \(\ge\) 1 + 2 = 3 (đpcm)
Dấu "=" xảy ra khi a = b = c
cho a, b ,c la 3 canh cua tam giac
chung minh (a+b+c).(1/a+1/b+1/c)>6
ta có \(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}.\)
áp dụng vào bài ta có\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9>6\)
Ta có :\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=a\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+b\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+c\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)
\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)
Nhận thấy \(\frac{a}{b}+\frac{b}{a}\ge2\)
Thật vậy ta có : \(\frac{a}{b}+\frac{b}{a}\ge2\)
<=> \(\frac{a^2+b^2}{ab}\ge2\Rightarrow a^2+b^2\ge2ab\Rightarrow a^2-2ab+b^2\ge0\Rightarrow\left(a-b\right)^2\ge0\left(\text{đúng}\right)\)
Tương tự ta chứng minh được \(\hept{\begin{cases}\frac{a}{c}+\frac{c}{a}\ge2\\\frac{b}{c}+\frac{c}{b}\ge2\end{cases}}\)
Khi đó \(3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\ge3+2+2+2\ge9>6\)(đpcm)
program Nguyen_Dang_Khoa; uses crt; var a,b,c:real; begin clrscr; writeln('KIEM TRA TAM GIAC'); writeln('nhap 3 canh a,b,c:'); readln(a,b,c); if (a+b>c) and (a+c>b) and (b+c>a)then begin writeln('day la 3 canh cua tam giac'); if(a*a=b*b+c*c) or(b*b=a*a+c*c)or(c*c=a*a+b*b)then writeln('TAM GIAC VUONG')else if(a=b)and(b=c)then writeln('TAM GIAC DEU') else if(a=b)or(a=c)or(b=c)then writeln('TAM GIAC CAN')else writeln('TAM GIAC THUONG'); end else writeln('khong phai ba canh tam giac'); readln; end.
cho a,b,c la do dai 3 canh tam giac. cmr: can 3(a-c)(b-a)(c-b)/a.b.c lon hon bang 1/2