Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
masu konoichi
Xem chi tiết
Tống Lê Kim Liên
17 tháng 11 2015 lúc 12:15

Tham khảo câu hỏi tương tự nhé bạn .

Tick tớ đc chứ 

Hùng Phan Đức
Xem chi tiết
Vui lòng để tên hiển thị
28 tháng 3 2023 lúc 21:15

`A = n^2(n^4 - 2n^3 + 2n^2 - 2n + 1)` 

Để `A` chính phương thì `n^4 - 2n^3 + 2n^2 - 2n + 1 = a^2 (a in NN)`.

`<=> n^4 -2n^3 + n^2 + n^2- 2n +1 = a^2`

`<=> (n^2+1)(n-1)^2 = a^2`.

Vì `(n-1)^2` chính phương, `a^2` chính phương.

`=> n^2+1` chính phương.

Đặt `n^2+1 = b^2(b in NN)`.

`=> (b-n)(b+n) =1`

Mà `b, n in NN`.

`=> {(b-n=1), (b+n=1):}`

`<=> {(b=1), (n=0):}`

Vậy `n = 0`.

Phạm Thanh Ngọc
Xem chi tiết
Đặng vân anh
Xem chi tiết
Lê Xuân Hoan
20 tháng 11 2016 lúc 22:29

ừm,tớ cũng chưa giải đc nè !

Nguyen Tran Thanh Cong
Xem chi tiết
Lương Mai Hiền
Xem chi tiết
Nguyễn Xuân Nam
28 tháng 12 2016 lúc 21:20

Gọi d là U7CLN(2n+3;n+1)

Ta có : 2n+3 chia hết cho d và n+1 chia hết cho d

Từ đó , ta suy ra : {(2n+3)-[2(n+1)]} chia hết cho d

                        =>(2n+3)-(2n+2) chia hết cho d

                        =>(2n-2n)+(3-2) chia hết cho d

                        =>    0    +   1   chia hết cho d

                        =>          1        chia hết cho d

Suy ra : d = 1 [ tức là ƯCLN(2n+3;n+1)=1]

Vậy : 2n+3 và n+1 là hai số nguyên tố cùng nhau

Nguyễn Hữu Triết
28 tháng 12 2016 lúc 21:00

Gọi d = UCLN(2n+3; n+1)

Ta có: 2n+3 và n+1 chia hết cho d

[2n+3-2(n+1)] chia hết cho d

2n+3-2n+2 chia hết cho d

=> 1 chia hết cho d

=> d = 1

Vậy hai số 2n+3 và n+1 là hai số nguyên tố cùng nhau

Min Kiu
28 tháng 12 2016 lúc 21:07

cách giải nè

gọi m là ƯCLN(2n+3;n+1)

=>(n+1)chia hết cho m (vì ko viết đc dấu chia hết nên mk phải viết chữ bạn thông cảm)

=>2 x (n+1) Chia hết cho m

=>(2n+2 )chia hết cho m

=>[(2n+3)-(2n+2)] chia hết cho m

=>1 chia hết cho m

=>m=1

=>ƯCLN(2n+3;n+1)=1

=>2 số đó là 2 SNT cùng nhau

chúc bn hk tốt

Thái Trần Thảo Vy
Xem chi tiết
Nguyễn Linh Chi
23 tháng 3 2020 lúc 18:25

Đặt d = ( n + 1; 7n + 4 )

Ta có: \(\hept{\begin{cases}7n+4⋮d\\n+1⋮d\end{cases}}\Rightarrow\hept{\begin{cases}7n+4⋮d\\7n+7=7\left(n+1\right)⋮d\end{cases}}\Rightarrow\left(7n+7\right)-\left(7n+4\right)⋮d\)

=> \(3⋮d\Rightarrow d\in\left\{1;3\right\}\)=> d có thể bằng 3 hoặc bằng 1

Với d = 3 ta có:  \(\hept{\begin{cases}7n+4⋮3\\n+1⋮3\end{cases}}\Rightarrow\hept{\begin{cases}7n+4⋮3\\6n+6=6\left(n+1\right)⋮3\end{cases}}\Rightarrow\left(7n+4\right)-\left(6n+6\right)⋮3\)

=> \(n-2⋮3\)

=> Tồn tại số tự nhiên k sao cho : n - 2 = 3k => n = 3k + 2

=> n khác 3k + 2 thì d khác 3 

hay n khác 3k + 2 thì d = 1

=> n khác 3k + 2 thì n + 1 và 7n + 4 là hai số nguyên tố cùng nhau.

Khách vãng lai đã xóa
Thái Trần Thảo Vy
24 tháng 3 2020 lúc 7:27

cảm ơn nhiều

Khách vãng lai đã xóa
Lê Thị Thanh Huyền
Xem chi tiết
doremon
14 tháng 11 2014 lúc 21:41

Gọi 3 số nguyên tố lẻ liên tiếp đó là p ; p + 2 ; p + 4

+)Nếu p = 3k + 1 thì p + 2 = 3k + 3 là hợp số (loại)

+)Nếu p = 3k + 2 thì p + 4 = 3k + 6 là hợp số (loại)

Vậy p = 3k \(\Rightarrow\)k = 1\(\Rightarrow\)p = 3

p + 2 = 5

p + 4 = 7

Vậy 3 số tự nhiên lẻ liên tiếp đều là số nguyên tố là 3 ; 5 ; 7

 

 

 

xicor
15 tháng 8 2017 lúc 8:52

Xhrijfrjiajdjbchusndkxcihsy Cr j hư f

Nguyễn Thị Ngọc Dương
13 tháng 11 2017 lúc 19:40

Hay quá, đúng rồi

Phuong ao cuoi
Xem chi tiết
Phan Dang Hai Huy
27 tháng 12 2017 lúc 17:21

khó quá khó tìm,k đi!!!!!