Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thế Bảo
Xem chi tiết
okokok
Xem chi tiết
Trần Đình Thuyên
28 tháng 7 2017 lúc 19:29

theo cô-si ta có

\(x+y\ge2\sqrt{xy}\)

\(y+z\ge2\sqrt{yz}\)

\(x+z\ge2\sqrt{xz}\)

nhân vế với vế ta có

\(A=\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge2\sqrt{xy}\times2\sqrt{yz}\times2\sqrt{xz}\)

\(A=\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8\sqrt{x^2y^2z^2}=8xyz\)

mà xyz=2            suy ra

\(A=\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8\times2=16\)

vậy GTNN của A=16

uzumaki naruto
28 tháng 7 2017 lúc 19:29

Ta có: x+y + z = 0 => x = -y-z (1) ; y= -x-z (2); z = -y-x (3)

Thay (1); (2); (3) vào A = (x+y)(y+z)(x+z), có:

A = (-y-z+y)(-x-z+z)(x - y - x) = (-z)(-x)(-y) = -(xyz) = -2 

Vậy khi xyz = 2 và x+y+z = 0 thì giá trị biểu thức  A = (x+y)(y+z)(x+z) là -2

lili
3 tháng 4 2020 lúc 23:31

Thuyên lm sai r đây là tính giá trị mà có phải tìm min đâu ??

Khách vãng lai đã xóa
Chau Ngoc Nam
Xem chi tiết
Thiên An
3 tháng 7 2017 lúc 11:30

Vì x+y+z=0

=>  \(\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)

Ta có  \(A=\frac{x}{y+z-x}+\frac{y}{x+z-y}+\frac{z}{x+y-z}\)

\(=\frac{x}{-x-x}+\frac{y}{-y-y}+\frac{z}{-z-z}=\frac{x}{-2x}+\frac{y}{-2y}+\frac{z}{-2z}\)

\(=\frac{-1}{2}+\frac{-1}{2}+\frac{-1}{2}=\frac{-3}{2}\)

Phạm Hoàng Quân
Xem chi tiết
Huỳnh Gia Phú
8 tháng 3 2016 lúc 20:40

Ta có : \(x+y+z=0\)

=>\(x+y=-z\)

\(y+z=-x\)

\(x+z=-y\)

=> \(B=\left(x+y\right)\left(y+z\right)\left(x+z\right)=\left(-x\right)\left(-y\right)\left(-z\right)=-xyz=-2\)

Hạnh Lương
Xem chi tiết
Quách Quỳnh Bảo Ngọc
Xem chi tiết
Lê Mỹ Duyên
Xem chi tiết
Freez Dora
Xem chi tiết
gojo satouru
Xem chi tiết