So sánh
a/ \(\frac{n}{n+3}\)và \(\frac{n-1}{n+4}\)
b/\(\frac{n}{2n+1}\)và \(\frac{3n+1}{6n+3}\)
so sánh
a\(\frac{n}{n+1}\)và \(\frac{n+2}{n+3}\)
b \(\frac{n}{n+3}\)và \(\frac{n-1}{n+4}\)
c \(\frac{n}{2n+1}\)và\(\frac{3n+1}{6n+3}\)
a). n/n+1 < n+2/n+3
b). n/n+3 > n−1/n+4
c). n/2n+1 < 3n+1/6n+3
k mk nha
\(\frac{n}{n+1}< 1\Rightarrow\frac{n}{n+1}< \frac{n+2}{n+1+2}=\frac{n+2}{n+3}\)
=>n/n+1<n+2/n+3
vậy........
b)\(\frac{n}{n+3}>\frac{n}{n+4}>\frac{n-1}{n+4}\Rightarrow\frac{n}{n+3}>\frac{n}{n+4}\)
vậy.....
c)\(\frac{n}{2n+1}=\frac{3n}{6n+3}< \frac{3n+1}{6n+3}\)
vậy.......
a) \(\frac{n}{n+1}=1-\frac{1}{n+1};\frac{n+2}{n+3}=1-\frac{1}{n+3}\)
Vì \(\frac{1}{n+1}>\frac{1}{n+3}\)=) \(1-\frac{1}{n+1}< 1-\frac{1}{n+3}\)
=) \(\frac{n}{n+1}< \frac{n+2}{n+3}\)
b) Áp dụng tính chất : Nếu \(\frac{a}{b}< 1\)=) \(\frac{a}{b}< \frac{a+m}{b+m}\)
Ta có : \(\frac{n-1}{n+4}< 1\)=) \(\frac{n-1}{n+4}< \frac{n-1+1}{n+4+1}=\frac{n}{n+5}< \frac{n}{n+3}\)
=) \(\frac{n-1}{n+4}< \frac{n}{n+3}\)
So sánh các phân số sau:
a,\(\frac{n}{n+1}\) và \(\frac{n+2}{n+3}\)(n thuộc N)
b, \(\frac{n}{2n+1}và\frac{3n+1}{6n+3}\)(n thuộc N)
Mình mới lớp 5 nên không biết làm bài này.
Xin lỗi nha! Chúc bạn may mắn......mình chính là Đào Minh Tiến!
a) \(\frac{n}{n+1}\)và \(\frac{n+2}{n+3}\)
\(\frac{n}{n+1}=\frac{n\cdot\left(n+3\right)}{\left(n+1\right)\cdot\left(n+3\right)}\)
\(\frac{n+2}{n+3}=\frac{\left(n+2\right)\cdot\left(n+1\right)}{\left(n+3\right)\cdot\left(n+1\right)}\)
So sánh : \(n\cdot\left(n+3\right)\)và \(\left(n+2\right)\cdot\left(n+3\right)\)
\(n\cdot\left(n+3\right)=n^2+3n\)
\(\left(n+2\right)\cdot\left(n+3\right)=n^2+5n+6\)
\(n^2+3n< n^2+5n+6\)
\(\Leftrightarrow\frac{n}{n+1}< \frac{n+2}{n+3}\)
b) \(\frac{n}{2n+1}\)và \(\frac{3n+1}{6n+3}\)
\(\frac{n}{2n+1}=\frac{n\cdot\left(6n+3\right)}{\left(2n+1\right)\cdot\left(6n+3\right)}\)
\(\frac{3n+1}{6n+3}=\frac{\left(3n+1\right)\cdot\left(2n+1\right)}{\left(6n+3\right)\cdot\left(2n+1\right)}\)
So sánh : \(n\cdot\left(6n+3\right)\)và \(\left(3n+1\right)\cdot\left(2n+1\right)\)
\(n\cdot\left(6n+3\right)=6n^2+3n\)
\(\left(3n+1\right)\cdot\left(2n+1\right)=6n^2+5n+1\)
\(6n^2+3n< 6n^2+5n+1\)
\(\Leftrightarrow\frac{n}{2n+1}< \frac{3n+1}{6n+3}\)
So sánh : a) \(\frac{n}{n+3}\) và \(\frac{n-1}{n+4}\)
b) \(\frac{n}{2n+1}\) và \(\frac{3n+1}{6n+3}\)
So sánh \(\frac{n}{2n+1}\)và \(\frac{3n+1}{6n+3}\)với n là số tự nhiên
Ta có:\(\frac{n}{2n+1}=\frac{3\cdot n}{3\cdot\left(2n+1\right)}\)
\(=\frac{3n}{6n+3}\)
Đến đây so sánh tử số.
Có \(\frac{n}{2n+1}=\frac{3n}{3\left(2n+1\right)}=\frac{3n}{6n+3}\)
Xét 2 mẫu của phân số: \(6n+3=6n+3\)
Xét 2 tử số của hai phân số: \(3n+1>3n\)
\(\Rightarrow\frac{3n}{6n+3}< \frac{3n+1}{6n+3}\)(phân số nào cùng mẫu, có tử lớn hơn thì lớn hơn)
So sánh các phân số sau:
\(\frac{18}{91}\)và\(\frac{23}{114}\);\(\frac{21}{52}\)và\(\frac{213}{523}\);\(\frac{1313}{9191}\)và\(\frac{1111}{7373}\);\(\frac{n}{n+3}\)và\(\frac{n-1}{n+4}\);\(\frac{n}{2n+1}\)và\(\frac{3n+1}{6n+3}\)
So sánh:
a) \(A=\frac{n}{n+1};B=\frac{n+2}{n+3}\left(n\inℕ\right)\)
b) \(A=\frac{n}{n+3};B=\frac{n-1}{n+4}\left(n\inℕ^∗\right)\)
c) \(A=\frac{n}{2n+1};B=\frac{3n+1}{6n+3}\left(n\inℕ\right)\)
Giúp mình nhé gấp lắm ai trả lời đầu tiên mình sẽ tick
a)A=n/n+1=n/n+0/1
B=n+2/n+3=n/n + 2/3
ta có:0<2/3
=>A<B
so sánh
a)\(\frac{n}{2n+1}\) và\(\frac{3n+1}{6n+3}\)
\(\frac{n}{2n+1}\)=\(\frac{3.n}{3.\left(2n+1\right)}\)=\(\frac{3n}{6n+3}\)
Vì 6n+3=6n+3;3n<3n+1 nên \(\frac{n}{2n+1}\)<\(\frac{3n+1}{6n+3}\)
So sánh:a) \(\frac{n}{2n+1}\)và \(\frac{3n+1}{6n+3}\)
b) \(\frac{n}{n+1}\)và\(\frac{n+2}{n+3}\) (n thuộc Z)
c)\(\frac{n}{n+3}\)và\(\frac{n-1}{n+4}\)(n thuộc Z)
a) quy đồng : \(\frac{n}{2n+1}=\frac{3n}{6n+3}\)
Vì 3n < 3n + 1 => \(\frac{3n}{6n+3}< \frac{3n+1}{6n+3}\)hay \(\frac{n}{2n+1}< \frac{3n+1}{6n+3}\)
b) Ta có :
\(\frac{n}{n+1}=\frac{n+1-1}{n+1}=1-\frac{1}{n+1}\)
\(\frac{n+2}{n+3}=\frac{n+3-1}{n+3}=1-\frac{1}{n+3}\)
Vì \(\frac{1}{n+1}>\frac{1}{n+3}\)nên \(1-\frac{1}{n+1}< 1-\frac{1}{n+3}\)hay \(\frac{n}{n+1}< \frac{n+2}{n+3}\)
c) giả sử \(\frac{n}{n+3}< \frac{n-1}{n+4}\)
\(\Leftrightarrow\frac{n\left(n+4\right)}{\left(n+3\right)\left(n+4\right)}< \frac{\left(n-1\right)\left(n+3\right)}{\left(n+3\right)\left(n+4\right)}\)
\(\Rightarrow n^2+4n< n^2+2n-3\)
\(\Rightarrow2n< -3\)( vô lí )
Vậy \(\frac{n}{n+3}>\frac{n-1}{n+4}\)
a; lim\(\frac{\sqrt{6n^4+n+1}}{2n^2+1}\)
b; lim \(\frac{\left(n+1\right)\left(2n+1\right)^2\left(3n+1\right)^3}{n^2\left(n+2\right)^2\left(1-3n\right)^2}\)