Những câu hỏi liên quan
Nguyễn Minh Đăng
Xem chi tiết
doanhdoanh_2912
1 tháng 6 2021 lúc 20:47

lại nữa

Bình luận (0)
 Khách vãng lai đã xóa
Phan Nghĩa
1 tháng 6 2021 lúc 20:48

Từ giả thiết , ta có : \(GT< =>\frac{\left(3a+2b\right)\left(3a+2c\right)}{bc}=\frac{16}{bc}\)

\(< =>\left(\frac{3a}{b}+\frac{2b}{b}\right)\left(\frac{3a}{c}+\frac{2c}{c}\right)=16\)

\(< =>\left(3\frac{a}{b}+2\right)\left(3\frac{a}{c}+2\right)=16\)

đến đây nhắn cho e cái điểm rơi để e nghĩ tiếp nhaaaaaaa

Bình luận (0)
 Khách vãng lai đã xóa
Đanh Fuck Boy :))
1 tháng 6 2021 lúc 21:40

\(P=\frac{a}{b+c}+\frac{b+c}{a}\ge2\left(AM-GM\right)\)

Đẳng thức xảy ra khi : \(a^2=b^2+2bc+c^2\)

Từ giả thiết và đk xảy ra dấu "=" ta đc hệ:

\(\hept{\begin{cases}9a^2+6ab+6ac+4bc=16bc\\b^2+2bc+c^2=a^2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3a^2+2ab+2ac-4bc=0\\b^2+2bc+c^2-a^2=0\end{cases}}\)

\(\Leftrightarrow2a^2+2ab+2ac+2b^2+2c^2-2bc=b^2+c^2\)

\(\Leftrightarrow\left(a+b\right)^2+\left(b-c\right)^2+\left(a+c\right)^2=b^2+c^2\)

\(\Leftrightarrow\left[\left(a+b\right)^2-b^2\right]+\left(b-c\right)^2+\left[\left(a+c\right)^2-c^2\right]=0\)

\(\Leftrightarrow a\left(a+2b\right)+a\left(a+2c\right)+\left(b-c\right)^2=0\)

\(\Leftrightarrow a\left(2a+2b+2c\right)+\left(b-c\right)^2=0\)

Vì a,b,c dương suy ra : \(\left(b-c\right)^2=0\Leftrightarrow b=c\)

\(\Rightarrow a^2=4b^2\Leftrightarrow a=2b=2c\)

Đến đây mình chịu 

Mà mình còn chẳng biết cách lm này có đúng ko 

Bình luận (0)
 Khách vãng lai đã xóa
Lê Tài Bảo Châu
Xem chi tiết
Đặng Ngọc Quỳnh
23 tháng 5 2021 lúc 18:52

Ta có:

sigma \(\frac{ab}{3a+4b+5c}=\) sigma \(\frac{2ab}{5\left(a+b+2c\right)+\left(a+3b\right)}\le\frac{2}{36}\left(sigma\frac{5ab}{a+b+2c}+sigma\frac{ab}{a+3b}\right)\)

Ta đi chứng minh: \(sigma\frac{ab}{a+b+2c}\le\frac{9}{4}\)

có: \(sigma\frac{ab}{a+b+2c}\le\frac{1}{4}\left(sigma\frac{ab}{c+a}+sigma\frac{ab}{b+c}\right)=\frac{1}{4}\left(a+b+c\right)=\frac{9}{4}\)

BĐT trên đúng nếu: \(sigma\frac{ab}{a+3b}\le\frac{9}{4}\)

Ta thấy: \(sigma\frac{ab}{a+3b}\le\frac{1}{16}\left(sigma\frac{ab}{a}+sigma\frac{3ab}{b}\right)=\frac{1}{16}\)( sigma \(b+sigma3a\)\(=\frac{1}{4}\left(a+b+c\right)=\frac{9}{4}\)

\(\Leftrightarrow sigma\frac{ab}{3a+4b+5c}\le\frac{1}{18}\left(5.\frac{9}{4}+\frac{9}{4}\right)=\frac{3}{4}\)(1)

MÀ: \(\frac{1}{\sqrt{ab\left(a+2c\right)\left(b+2c\right)}}=\frac{2}{2\sqrt{\left(ab+2bc\right)\left(ab+2ca\right)}}\ge\frac{2}{2\left(ab+bc+ca\right)}\)

\(=\frac{3}{3\left(ab+bc+ca\right)}\ge\frac{3}{\left(a+b+c\right)^2}=\frac{3}{9^2}=\frac{1}{27}\)(2)

Từ (1) và (2) \(\Rightarrow T\le\frac{3}{4}-\frac{1}{27}=\frac{77}{108}\)

Vậy GTLN của biểu thức T là 77/108 <=> a=b=c=3

Bình luận (0)
 Khách vãng lai đã xóa
Kiệt Nguyễn
Xem chi tiết
Dung Tri
Xem chi tiết
Phước Nguyễn
31 tháng 5 2016 lúc 15:48

Đặt  \(x=\frac{2}{a};\) \(y=\frac{4}{b};\)  \(z=\frac{1}{c}\)  

(Vì  \(a,b,c\in R^+\) nên suy ra  \(x,y,z>0\) )

Khi đó, điều kiện (giả thiết) đã cho trở thành  \(\frac{x^3+y^3}{xyz}+2\left(\frac{x}{y}+\frac{y}{x}\right)=6\)   \(\left(\text{*}\right)\)

Với điều kiện mà  \(x,y,z\)  nhận được trên thì ta dễ dàng chứng minh được:  

\(x^3+y^3\ge xy\left(x+y\right)\)  

Do đó,   \(\frac{x^3+y^3}{xyz}\ge\frac{xy\left(x+y\right)}{xyz}=\frac{x+y}{z}\)

Mặt khác, nhờ vào bđt Cauchy và yếu tố chủ chốt là  \(x,y>0\), ta có đánh giá sau:  \(\frac{x}{y}+\frac{y}{x}\ge2\) 

nên  \(6=\frac{x^3+y^3}{xyz}+2\left(\frac{x}{y}+\frac{y}{x}\right)\ge\frac{x+y}{z}+4\)

\(\Rightarrow\)  \(0< \frac{x+y}{z}\le2\)

\(--------------\)

Ta có:

\(P=\frac{x}{y+2z}+\frac{y}{2z+x}+\frac{4z}{x+y}\ge\frac{x^2}{xy+2xz}+\frac{y^2}{2yz+xy}+\frac{4z}{x+y}\)

\(\ge\frac{\left(x+y\right)^2}{2xy+2z\left(x+y\right)}+\frac{4z}{x+y}\ge\frac{\left(x+y\right)^2}{\frac{\left(x+y\right)^2}{2}+2z\left(x+y\right)}+\frac{4z}{x+y}=\frac{2\left(x+y\right)}{x+y+4z}+\frac{4z}{x+y}\)

Tóm lại:  \(P\ge\frac{\frac{2\left(x+y\right)}{z}}{\frac{x+y}{z}+4}+\frac{4}{\frac{x+y}{z}}\)

\(--------------\)

Đặt  \(t=\frac{x+y}{z}\)  \(\left(0< t\le2\right)\). Ta biểu diễn bất đẳng thức trên dưới dạng biến  \(t\)  như sau:

\(P\ge\frac{2t}{t+4}+\frac{4}{t}=\frac{2t}{t+4}+\frac{4}{t+4}+\frac{8}{t\left(t+4\right)}+\frac{8}{t\left(t+4\right)}\ge3\sqrt[3]{\frac{64t}{t\left(t+4\right)^3}}+\frac{8}{t\left(t+4\right)}\)

\(\ge\frac{12}{t+4}+\frac{8}{t\left(t+4\right)}\ge\frac{12}{2+4}+\frac{8}{2.6}=\frac{8}{3}\)

Dấu  \("="\) xảy ra   \(\Leftrightarrow\)   \(\hept{\begin{cases}x=y\\\frac{x+y}{z}=2\end{cases}}\)  \(\Leftrightarrow\)  \(x=y=z\)  \(\Leftrightarrow\)  \(2a=b=4c\)

Vậy,  \(P\) đạt giá trị nhỏ nhất là  \(\frac{8}{3}\) khi  \(2a=b=4c\)

Bình luận (0)
Đặng Anh Thư
Xem chi tiết
Quân Thiên Vũ
Xem chi tiết
jungkook
Xem chi tiết
pham thi thu trang
Xem chi tiết
Tuyển Trần Thị
3 tháng 10 2017 lúc 20:49

ap dung bdt \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\) 

\(\frac{1}{2a+b+c}=\frac{1}{\left(a+b\right)+\left(a+c\right)}\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)

\(\Rightarrow P\le\frac{1}{16}\left[\left(\frac{1}{a+b}+\frac{1}{a+c}\right)^2+\left(\frac{1}{a+b}+\frac{1}{b+c}\right)^2+\left(\frac{1}{b+c}+\frac{1}{a+c}^2\right)\right]\)

\(\Rightarrow16P\le\frac{2}{\left(a+b\right)^2}+\frac{2}{\left(b+c\right)^2}+\frac{2}{\left(a+c^2\right)}+\frac{2}{\left(a+b\right)\left(b+c\right)}+\frac{2}{\left(a+b\right)\left(a+c\right)}\)\(+\frac{2}{\left(b+c\right)\left(c+a\right)}\)

ap dung \(x^2+y^2+z^2\ge xy+yz+xz\) voi a+b=x, b+c=y, c+a=z

\(16P\le\frac{4}{\left(a+b\right)^2}+\frac{4}{\left(b+c\right)^2}+\frac{4}{\left(c+a\right)^2}\)

tiếp tục áp dụng bdt ban đầu \(\frac{4}{a+b}\le\frac{1}{a}+\frac{1}{b}\)

\(\Rightarrow\frac{1}{\left(a+b\right)^2}\le4.16.\left(\frac{1}{a}+\frac{1}{b}\right)^2\)

\(\Rightarrow16P\le\frac{1}{4}.16\left[\left(\frac{1}{a}+\frac{1}{b}\right)^2+\left(\frac{1}{b}+\frac{1}{c}\right)^2+\left(\frac{1}{c}+\frac{1}{a}\right)^2\right]\)

=\(\frac{1}{4}\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}\right)\)

tiep tuc ap dung bo de thu 2 ta co 

\(16P\le\frac{1}{4}.4\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=3\)

\(\Rightarrow p\le\frac{3}{16}\)dau =khi a=b=c=1

Bình luận (0)
Phan Nghĩa
3 tháng 8 2020 lúc 21:02

Nguồn : mạng :V vào thống kê coi hìnholm.pn

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Thị Kim Tuyến
Xem chi tiết
Nguyễn Linh Chi
20 tháng 11 2019 lúc 16:32

Câu hỏi của Phạm Trần Minh Trí - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo.

Bình luận (0)
 Khách vãng lai đã xóa