cho ps A=n+1/n-3(n thuộc N,n khác 3).tìm n để a là ps tối giản
Cho ps A= n+1/n-3 (n thuộc Z; n khác 3)
a Tìm n để A có giá trị nguyên
b, Tìm n để A là ps tối giản
Cho ps A=n+1/ n-m (với n thuộc Z; n khác 3)
a) Tìm n để acó giá trị nguyên
b) Tìm n để A là ps tối giản
tìm n thuộc N để ps 63/3n+1 là ps tối giản
Cho A = n+1/n-3
a,tìm đk của n để phân số A là phân số
b, Tìm đk của n để ps A có giá trị nguyên
c,.tìm n để A là ps tối giản
(ps là phân số)
Cho: \(A=\frac{-3}{n+2}\)
a)Tìm số nguyên n để A là phân số tối giản? ( PS tối giản hay là PS không rút gọn được nữa là PS mà tử và mẫu chỉ có ước chung là 1 và -1)
b) Tìm số nguyên n để A là phân số rút gọn được?
c) Tìm số nguyên n để A là số nguyên tố
Chứng minh
a, cho biểu thức A=5/n-1(n€Z)
Tìm điều kiện của n để A là ps . Tìm tất cả giá trị nguyên của n để A là số nguyên
b, chứng minh ps n/n+1 là ps tối giản (n€N và n khác 0)
c*, chứng tỏ rằng 1/1.2+1/2.3+1/3.4+...+1/49.50<1
a, Biểu thức A có \(5\inℤ,n\inℤ\). Để A là phân số thì ta có điều kiện là :\(n-1\ne0\Rightarrow n\ne-1\)
\(A=\frac{5}{n-1}\Rightarrow n-1\inƯ(5)\)
Để A là số nguyên \(\Leftrightarrow n-1\in\left\{\pm1;\pm5\right\}\)
n - 1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -4 |
b, Gọi d là ƯCLN\((n,n+1)\)
Ta có : \(\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)
\(\Rightarrow(n+1)-n⋮d\)
\(\Rightarrow n-n+1⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy : ....
c, \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}< 1-\frac{1}{2}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}=\frac{49}{50}< \frac{50}{50}=1\)
\((đpcm)\)
Cho ps A=n-5/n†1(n thuộc Z)
a)Tìm n để A có giá trị nguyên
b) tìm n để A là phân số tối giản
a ; Để A có giá trị nguyên thì:
n-5:n+7
(n-5)-(n+7):n+7
-12:n+7
a, \(A=\frac{n+1-6}{n+1}=1-\frac{6}{n+1}\)
A có giá trị nguyên \(\Leftrightarrow n+1\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
n + 1 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | 0 | -2 | 1 | -3 | 2 | -4 | 5 | -7 |
b, A tối giản \(\Leftrightarrow(n+1;n+5)\Leftrightarrow(n+1;6)=1\)
\(\Leftrightarrow(n+1)\)không chia hết cho 2 và \((n+1)\)không chia hết cho 3
\(\Leftrightarrow n\ne2k-1\)và \(n\ne3k-1(k\inℤ)\)
P/S : Hoq chắc :>
a) Để A=n-5/n+1 có giá trị nguyên thì n-5 chia hết cho n+1
=>n+1-6 chia hết cho n+1
=>6 chia hết cho n+1
=>n+1 thuộc Ư(6)={1;2;3;6;-1;-2;-3;-6}
=>n thuộc {0;1;2;5;-2;-3;-4;-7}
Vậy.....
Cho A =2n+1/n-3 (n€Z,n khác 3). Tìm n để A là PS tối giản.giúp mình nha
Cho biểu thức: A= [(2n+1)/n—3]+[(3n—5)/n—3)]—[(4n—5)/n—3)]
A) Tìm n để A nhận giá trị nguyên
B) Tìm n để A là ps tối giản