Tính nhanh:
\(\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+ \frac{1}{66}\)
Tính nhanh nếu có thể:
a)
\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\)
b)
\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}+\frac{1}{66}\)
a) \(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\)
\(=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}+\frac{1}{13.15}\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{15}\right)\)
\(=\frac{1}{2}.\frac{14}{15}\)
\(=\frac{14}{30}=\frac{7}{15}\)
a)
\(=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}+\frac{1}{13.15}\)
\(=2\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\right)\)
\(=2\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\right)\)
\(=2\left(1-\frac{1}{15}\right)\)
\(=2.\frac{14}{15}\)
\(=\frac{28}{15}\)
b)
\(=1+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+\frac{2}{90}+\frac{2}{110}+\frac{2}{132}\)
\(=1+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{5.6}+\frac{2}{6.7}+\frac{2}{7.8}+\frac{2}{8.9}+\frac{2}{9.10}+\frac{2}{10.11}+\frac{2}{11.12}\)
\(...\)
Tính hợp lý;
\(\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+.....+\frac{1}{66}\)
Tính
a) \(\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+....+\frac{1}{66}\)
b) \(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+....+\frac{1}{72}+\frac{1}{90}\)
b,
\(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{90}\)
\(=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{8.9}+\frac{1}{9.10}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
=\(\frac{1}{4}-\frac{1}{10}=\frac{3}{20}\)
Bạn k rồi mình làm câu a cho
Tính nhanh: N = \(\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)
Có: \(N=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+....+\frac{1}{120}\)
\(=>N=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{240}\)
\(=>N=\frac{2}{4\cdot5}+\frac{2}{5\cdot6}+\frac{2}{6\cdot7}+...+\frac{2}{15\cdot16}\)
\(=>N=\left(\frac{2}{4}-\frac{2}{5}+\frac{2}{5}-\frac{2}{6}+...+\frac{2}{15}-\frac{2}{16}\right)\)
\(=>N=\frac{2}{4}-\frac{2}{16}\)
\(=>N=\frac{1}{2}-\frac{1}{8}\)
\(=>N=\frac{8-2}{16}=\frac{6}{16}=\frac{3}{8}\)
Vậy \(N=\frac{3}{8}\)
Ta có :
\(N=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)
\(N=2\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{240}\right)\)
\(N=2\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{15.16}\right)\)
\(N=2\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{15}-\frac{1}{16}\right)\)
\(N=2\left(\frac{1}{4}-\frac{1}{16}\right)\)
\(N=\frac{1}{2}-\frac{1}{8}\)
\(N=\frac{3}{8}\)
Vậy \(N=\frac{3}{8}\)
Chúc bạn học tốt ~
tính nhanh \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}\)
lấy (1/3 + 1/15 +1/10 + 1/21 ) + (1/36 + 1/28 + 1/6) + (1/45 + 1/55)
= (4/50 + 3/70) + 2/100
= 7/120 + 2/100
= 9/220
Tính giá trị của biểu thức, tính nhanh nếu có thể:
21) ( 1 + 1/3 ) . ( 1 + 1/8 ) . ( 1 + 1/15 ) . ...... ( 1+ 1/9999)
22) A = \(\frac{38}{25}+\frac{9}{10}-\frac{11}{15}+\frac{13}{21}-\frac{15}{28}+\frac{17}{36}-......+\frac{197}{4851}-\frac{199}{4950}\)
21)
\(\left(1+\dfrac{1}{3}\right).\left(1+\dfrac{1}{8}\right).\left(1+\dfrac{1}{15}\right).....\left(1+\dfrac{1}{9999}\right)\\ =\dfrac{4}{3}.\dfrac{9}{8}.\dfrac{16}{15}.....\dfrac{10000}{9999}\\ =\dfrac{2.2}{1.3}.\dfrac{3.3}{2.4}.\dfrac{4.4}{3.5}.....\dfrac{100.100}{99.101}\\ =\dfrac{2.3.4.....100}{1.2.3.....99}.\dfrac{2.3.4.....100}{3.4.5.....101}\\ =100.\dfrac{2}{101}\\ =\dfrac{200}{101}\)
Tính nhanh
\(A=1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}\)\(\frac{1}{45}\)
Nhanh tk !!
A=1+(1/6+1/12+1/20+...+1/90):2
A=1+(1/2-1/3+1/3-1/4+1/4-1/5+...+1/9-1/10):2
A=1+(1/2-1/10):2
A=1+2/5:2
A=1+1/5
A=6/5
Vậy A=6/5 nha bạn
Đúng 100%
k mk nha
Mk nhanh nhất
\(A=1+\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+..+\frac{1}{90}\right):2\)
\(A=1+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right):2\)
\(A=1+\left(\frac{1}{2}-\frac{1}{10}\right):2\)
\(A=1+\frac{2}{5}:2=1+\frac{1}{5}=\frac{6}{5}\)
vậy...
tính nhanh giá trị của biểu thức: A=\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}\)
Tính nhanh
\(A=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)
Ta có:
\(A=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)
\(=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{240}\)
\(=\frac{2}{4.5}+\frac{2}{5.6}+\frac{2}{6.7}+...+\frac{2}{15.16}\)
\(=2.\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{15.16}\right)\)
\(=2.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{15}-\frac{1}{16}\right)\)
\(=2.\left(\frac{1}{4}-\frac{1}{16}\right)\)
\(=2.\left(\frac{4}{16}-\frac{1}{16}\right)\)
\(=2.\frac{3}{16}=\frac{3}{8}\)