Cho p/s A = n+1/n-3 ( n \(\in\) Z ; n khác 3 )
Tìm n để A là p/s tối giản
bài 1: chứng minh rằng:
a, n3+3n2-n-3 chia hết cho 48 với n thuộc Z và n lẻ
b, a3+5a+b3+17b+c3+23c chia hết cho 6 a,b,c thuộc Z
bài 2: tìm n\(\in\)Z sao cho A=n3-n2-n-2 là số nguyên tố
1) a. Câu hỏi của Hàn Vũ Nhi - Toán lớp 8 - Học toán với OnlineMath
Cho Biểu Thức : \(A=\dfrac{2n+1}{n-3}+\dfrac{3n-5}{n-3}-\dfrac{4n-5}{n-3}\left(n\in Z,n\ne3\right)\)
a) Tìm n để A nhận giá trị nguyên
b) Tìm n để A là p/s tối giản
.
a, \(A=\dfrac{5n-4-4n+5}{n-3}=\dfrac{n+1}{n-3}=\dfrac{n-3+4}{n-3}=1+\dfrac{4}{n-3}\Rightarrow n-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n-3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 4 | 2 | 5 | 1 | 7 | -1 |
a.\(A=\dfrac{2n+1}{n-3}+\dfrac{3n-5}{n-3}-\dfrac{4n-5}{n-3}\)
\(A=\dfrac{2n+1+3n-5-4n+5}{n-3}\)
\(A=\dfrac{n+1}{n-3}\)
\(A=\dfrac{n-3}{n-3}+\dfrac{4}{n-3}\)
\(A=1+\dfrac{4}{n-3}\)
Để A nguyên thì \(\dfrac{4}{n-3}\in Z\) hay \(n-3\in U\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n-3=1 --> n=4
n-3=-1 --> n=2
n-3=2 --> n=5
n-3=-2 --> n=1
n-3=4 --> n=7
n-3=-4 --> n=-1
Vậy \(n=\left\{4;2;5;7;1;-1\right\}\) thì A nhận giá trị nguyên
b.hemm bt lèm:vv
Cho S=n^3.(n+2)^2+(n+1).(n^3-5n+1)-2n-1\(⋮\) 120
với mọi n\(\in Z\)
Cho p/s A=\(\frac{n+1}{n-3}\)(n thuộc Z; n khác 3). Tìm n để A là p/s tối giản
cho p/s ; A= n+1/n-3(n thuộc Z , n khác 3)
tìm n để A là STN
1`,
a,Chúng tỏ rằng p/s \(\frac{2n+5}{n+3}\left(n\in N\right)\)là p/s tối giản
b,Tìm \(n\in z\)để B=\(\frac{2n}{n+3}+\frac{5}{n+3}\)có giá trị là số nguyên
a, Gọi ƯCLN 2n + 5 ; n + 3 = d \(\left(d\inℕ^∗\right)\)
Ta có : \(2n+5⋮d\)(1)
\(n+3⋮d\Rightarrow2n+6⋮d\)(2)
Lấy (2) - (1) ta được : \(2n+6-2n-5⋮d\Rightarrow1⋮d\Rightarrow d=1\)
b, Để \(B=\frac{2n}{n+3}+\frac{5}{n+3}=\frac{2n+5}{n+3}\)nhận giá trị nguyên khi
\(2n+5⋮n+3\Leftrightarrow2\left(n+3\right)-1⋮n+3\)
\(\Rightarrow n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)
n + 3 | 1 | -1 |
n | -2 | -4 |
Cho p/s A = n+1/n-3 ( n $$ Z ; n khác 3 )
Tìm n để A là p/s tối giản
tim n biet n \(\in\)Z de cho p/s\(\frac{2n+15}{n+1}\) \(\in\)Z
\(\frac{2n+15}{n+1}=\frac{2n+2+13}{n+1}=\frac{2\left(n+1\right)+13}{n+1}=\frac{2\left(n+1\right)}{n+1}+\frac{13}{n+1}=2+\frac{13}{n+1}\)
Để \(\frac{2n+15}{n+1}\in Z\) <=> \(n+1\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
n + 1 | 1 | -1 | 13 | -13 |
n | 0 | -2 | 12 | -14 |
Vậy để \(\frac{2n+15}{n+1}\in Z\) thì n = {0;-2;12;-14}
\(\frac{2n+15}{n+1}\in Z\Leftrightarrow2n+15⋮n+1\Leftrightarrow2n+2+13⋮n+1\Leftrightarrow2\left(n+1\right)+13⋮n+1\)\(\Leftrightarrow13⋮n+1\) \(\left(vì2\left(n+1\right)⋮n+1\right)\)
\(\Leftrightarrow n+1\inƯ\left(13\right)\Leftrightarrow n+1\in\left\{\pm1;\pm13\right\}\Leftrightarrow n\in\left\{0;-2;12;-14\right\}\)
Vậy\(n\in\left\{0;-2;12;-14\right\}\)
Bài 1:Cho n\(\in\)N, Chứng minh:
a, 62n+1+5n+2 chia hết cho 3
b, 34n+1+3.10-13 chia hết cho 64
c, 62n+3n+2+3n chia hết cho 11
Bài 2: Cho m;n\(\in\)Z. Chứng minh: m.n.(m4-n4) chia hết cho 30.
Bài 3: Cho S=a13+a23+...+an3
P=a1+a2+...+an
(a1\(\in\)Z; i=1,n)
Chứng minh: S chia hết cho 6\(\Leftrightarrow\)P chia hết cho 6