Tìm các số nguyên x,y,z biết : (5x-7) 2 + (6-5y) 2 + ( 5z)2 = 10
help me!
Tìm các số nguyên x;y;z thỏa mãn: (5x-7)^2+(6-5y)^2+(5z)^2=10
tìm các số nguyên X;Y;Z biết (5X-7)2+(6-5Y)2+(5Z)2=10
Trả lời: X=....;Y=....;Z=.....
(Nhập các giá trị theo thứu tự theo các ô phía dưới)
tìm số nguyên x,y,z biết (5x-7)^2+(6-5y0^2=(5z)^2=10 x= y= z=
Tìm các số nguyên x; y; z biết (5x-7)2 + (6-5y)2 + (5z)2 = 0
Ta có: \(\left(5x-7\right)^2\ge0\) \(\left(6-5y\right)^2\ge0\) \(\left(5z\right)^2\ge0\) Nên để \(\left(5x-7\right)^2+\left(6-5y\right)^2+\left(5z\right)^2=0\)
Mình bổ sung: \(\Rightarrow\left(5x-7\right)^2=0\) ; \(\left(6+5y\right)^2=0\) \(\left(5z\right)^2=0\) \(\rightarrow\) 5x-7=0 . \(\rightarrow5x=7\Rightarrow x=\dfrac{7}{5}\) \(\left(6-5y\right)^2=0\rightarrow6-5y=0\rightarrow5y=6\rightarrow y=\dfrac{6}{5}\)
\(\left(5z\right)^2=0\rightarrow5z=0\) \(\rightarrow z=0\) Vậy x=\(\dfrac{7}{5}\) ; z=0; y= \(\dfrac{6}{5}\)
tim cac so nguyen x,y,z bt {5x-7} mu 2 cong {6 tru 5y } mu2 cong {5z } mu 2 bang 10
theo mk nghĩ ;
(5x - 7)2 + (6-5y)2 + (5z)2 = 10
chi xay ra khi 4+4+2 (loại) vi k có so nao binh phuong =2
vay 9+1+0 =10 ta co;
x = 2
y=1
z=0
(hop ly va duy nhat)
cho phan thuc A=\(\frac{\text{(5x^2+5y^2+5z^2)(x+y+z)^2+5(xy+yz+xz)^2}}{\text{(5x+5y+5z)-(25xy+25yz+25xz)}}\)
tìm các giá trị x,y,z để phân thức xác định
rút gọn A
Cho x,y,z > 0 .Tìm giá trị nhỏ nhất của \(P=\frac{\sqrt{5x^2+6xy+5y^2}}{x+y+2z}+\frac{\sqrt{5y^2+6yz+5z^2}}{y+z+2x}+\frac{\sqrt{5z^2+6zx+5x^2}}{z+x+2y}\)
cm bđt phụ \(5x^2+6xy+5y^2\ge4\left(x+y\right)^2\)nhé
Ta có: \(\sqrt{5x^2+6xy+5y^2}=\sqrt{4\left(x+y\right)^2+\left(x-y\right)^2}\ge\sqrt{4\left(x+y\right)^2}=2\left(x+y\right)\)
\(\Rightarrow\frac{\sqrt{5x^2+6xy+5y^2}}{x+y+2z}\ge\frac{2\left(x+y\right)}{x+y+2z}\)(1)
Tương tự, ta có: \(\frac{\sqrt{5y^2+6yz+5z^2}}{y+z+2x}\ge\frac{2\left(y+z\right)}{y+z+2x}\)(2); \(\frac{\sqrt{5z^2+6zx+5x^2}}{z+x+2y}\ge\frac{2\left(z+x\right)}{z+x+2y}\)(3)
Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{\sqrt{5x^2+6xy+5y^2}}{x+y+2z}+\frac{\sqrt{5y^2+6yz+5z^2}}{y+z+2x}+\frac{\sqrt{5z^2+6zx+5x^2}}{z+x+2y}\)\(\ge2\left[\frac{x+y}{\left(y+z\right)+\left(z+x\right)}+\frac{y+z}{\left(z+x\right)+\left(x+y\right)}+\frac{z+x}{\left(x+y\right)+\left(y+z\right)}\right]\)
Đặt \(x+y=a;y+z=b;z+x=c\)thì \(\frac{x+y}{\left(y+z\right)+\left(z+x\right)}+\frac{y+z}{\left(z+x\right)+\left(x+y\right)}+\frac{z+x}{\left(x+y\right)+\left(y+z\right)}\)\(=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
Nhưng ta có BĐT Nesbitt quen thuộc sau: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
Thật vậy:
(Bài này mình đã làm nhiều rồi nha nên ngại đánh lại, đây là bất đẳng thức có rất nhiều cách chứng minh nhưng mình nghĩ dồn biến là cách hay và đẹp nhất nha! Có thể tham khảo nhiều cách khác trên mạng, vô thống kê hỏi đáp của mình xem ảnh)
Như vậy: \(\frac{\sqrt{5x^2+6xy+5y^2}}{x+y+2z}+\frac{\sqrt{5y^2+6yz+5z^2}}{y+z+2x}+\frac{\sqrt{5z^2+6zx+5x^2}}{z+x+2y}\)\(\ge2\left[\frac{x+y}{\left(y+z\right)+\left(z+x\right)}+\frac{y+z}{\left(z+x\right)+\left(x+y\right)}+\frac{z+x}{\left(x+y\right)+\left(y+z\right)}\right]\)\(\ge2.\frac{3}{2}=3\)
Đẳng thức xảy ra khi x = y = z
Tìm các số x, y, z biết
1, x/2=y/5 và x.y =10
2, x/10=y/6=z/21 và 5x+y-2z=28
3, 3x=2y, 7y=5z, x-y+z=32
Ai nhanh mik tick cho 2 l-i-k-e
Cho phân thức :
\((5x^2+5y^2+5z^2)(x+y+z)^2+5(xy+yz+zx)^2\over(5x+5y+5z)^2-(25xy+25yz+25zx) \)
a)Tìm các giá trị của x,y,z để phân thức xác định
b)Rút gọn phân thức