Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lê phát minh
Xem chi tiết
Lê Thị Thanh Thúy
Xem chi tiết
Nguyễn Đăng Quyết
16 tháng 3 2016 lúc 15:44

X= 3 Y=6 Z=4

Em yêu

Myeong Bayby
Xem chi tiết
Catherine Nguyễn
Xem chi tiết
Truong le khanh
21 tháng 3 2017 lúc 22:27

Ta có: \(\left(5x-7\right)^2\ge0\) \(\left(6-5y\right)^2\ge0\) \(\left(5z\right)^2\ge0\) Nên để \(\left(5x-7\right)^2+\left(6-5y\right)^2+\left(5z\right)^2=0\)

Truong le khanh
21 tháng 3 2017 lúc 22:39

Mình bổ sung: \(\Rightarrow\left(5x-7\right)^2=0\) ; \(\left(6+5y\right)^2=0\) \(\left(5z\right)^2=0\) \(\rightarrow\) 5x-7=0 . \(\rightarrow5x=7\Rightarrow x=\dfrac{7}{5}\) \(\left(6-5y\right)^2=0\rightarrow6-5y=0\rightarrow5y=6\rightarrow y=\dfrac{6}{5}\)

Truong le khanh
21 tháng 3 2017 lúc 22:43

\(\left(5z\right)^2=0\rightarrow5z=0\) \(\rightarrow z=0\) Vậy x=\(\dfrac{7}{5}\) ; z=0; y= \(\dfrac{6}{5}\)

trần Văn An
Xem chi tiết
Đặng Quỳnh Ngân
19 tháng 3 2016 lúc 11:09

theo mk nghĩ ; 

(5x - 7)2 + (6-5y)2 + (5z)2 = 10

chi xay ra khi 4+4+2 (loại) vi k có so nao binh phuong =2

vay 9+1+0 =10 ta co;

x = 2

y=1

z=0

(hop ly va duy nhat)

Nguyễn Huy Vũ Dũng
Xem chi tiết
Mai Thành Đạt
Xem chi tiết
Trần Nguyễn Khánh Linh
13 tháng 1 2018 lúc 21:07

cm bđt phụ \(5x^2+6xy+5y^2\ge4\left(x+y\right)^2\)nhé

Kiệt Nguyễn
12 tháng 7 2020 lúc 10:15

Ta có: \(\sqrt{5x^2+6xy+5y^2}=\sqrt{4\left(x+y\right)^2+\left(x-y\right)^2}\ge\sqrt{4\left(x+y\right)^2}=2\left(x+y\right)\)

\(\Rightarrow\frac{\sqrt{5x^2+6xy+5y^2}}{x+y+2z}\ge\frac{2\left(x+y\right)}{x+y+2z}\)(1)

Tương tự, ta có: \(\frac{\sqrt{5y^2+6yz+5z^2}}{y+z+2x}\ge\frac{2\left(y+z\right)}{y+z+2x}\)(2); \(\frac{\sqrt{5z^2+6zx+5x^2}}{z+x+2y}\ge\frac{2\left(z+x\right)}{z+x+2y}\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{\sqrt{5x^2+6xy+5y^2}}{x+y+2z}+\frac{\sqrt{5y^2+6yz+5z^2}}{y+z+2x}+\frac{\sqrt{5z^2+6zx+5x^2}}{z+x+2y}\)\(\ge2\left[\frac{x+y}{\left(y+z\right)+\left(z+x\right)}+\frac{y+z}{\left(z+x\right)+\left(x+y\right)}+\frac{z+x}{\left(x+y\right)+\left(y+z\right)}\right]\)

Đặt \(x+y=a;y+z=b;z+x=c\)thì \(\frac{x+y}{\left(y+z\right)+\left(z+x\right)}+\frac{y+z}{\left(z+x\right)+\left(x+y\right)}+\frac{z+x}{\left(x+y\right)+\left(y+z\right)}\)\(=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

Nhưng ta có BĐT Nesbitt quen thuộc sau: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)

Thật vậy: 

(Bài này mình đã làm nhiều rồi nha nên ngại đánh lại, đây là bất đẳng thức có rất nhiều cách chứng minh nhưng mình nghĩ dồn biến là cách hay và đẹp nhất nha! Có thể tham khảo nhiều cách khác trên mạng, vô thống kê hỏi đáp của mình xem ảnh)

Như vậy: \(\frac{\sqrt{5x^2+6xy+5y^2}}{x+y+2z}+\frac{\sqrt{5y^2+6yz+5z^2}}{y+z+2x}+\frac{\sqrt{5z^2+6zx+5x^2}}{z+x+2y}\)\(\ge2\left[\frac{x+y}{\left(y+z\right)+\left(z+x\right)}+\frac{y+z}{\left(z+x\right)+\left(x+y\right)}+\frac{z+x}{\left(x+y\right)+\left(y+z\right)}\right]\)\(\ge2.\frac{3}{2}=3\)

Đẳng thức xảy ra khi x = y = z

Khách vãng lai đã xóa
Vũ Thùy Linh
Xem chi tiết
Cao Nguyễn Minh Thùy
Xem chi tiết