cho B=3/4+8/9+15/16+24/25+...+2499/2500. Chứng tỏ B không phải là số nguyên.
cho B = 3/4 + 8/9 + 15/16 + 24/25 + ...+ 2499/2500. Chứng tỏ B không phải là số nguyên
B \(=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+...+\frac{50^2-1}{50^2}\)
\(=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\right)\)
mà \(0
cho B=\(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+\frac{24}{25}+...+\frac{2499}{2500}\)
chứng tỏ rằng b không phải là số nguyên
Cho B = \(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+\frac{24}{25}+...+\frac{2499}{2500}\). Chững tỏ B không phải là số nguyên.
Cho B=\(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+\frac{24}{25}+.......+\frac{2499}{2500}\)Chứng tỏ B ko phải là số nguyên
\(=\frac{2\cdot4}{3^2}\cdot\frac{3.5}{4^2}\cdot\frac{4\cdot6}{5^2}\cdot......\cdot\frac{49\cdot51}{50^2}\)
=\(\frac{\left[2\cdot3\cdot4\cdot......\cdot49\right]\cdot\left[4\cdot5\cdot6\cdot.....\cdot51\right]}{\left[3\cdot4\cdot5\cdot....\cdot50\right]\cdot\left[3\cdot4\cdot5\cdot....\cdot50\right]}\)
=\(\frac{2\cdot51}{50\cdot3}\)
=\(\frac{17}{25}\)
Vì \(\frac{17}{25}\) ko phải là số nguyên nên B ko phải là số nguyên [ĐPCM]
Cho S:3/4+8/9+15/16+24/25+...2499/2500
Chứng tỏ rằng S ko phải là số tự nhiên.
Cho B= \(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+\frac{24}{25}+...+\frac{2499}{2500}\). CM/r : B không phải là số nguyên
Bạn tham khảo nhé
Ta có :
\(B=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+\frac{24}{25}+...+\frac{2499}{2500}\)
\(B=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+\frac{5^2-1}{5^2}+...+\frac{50^2-1}{50^2}\)
\(B=\left(1-\frac{1}{2^2}\right)+\left(1-\frac{1}{3^2}\right)+\left(1-\frac{1}{4^2}\right)+\left(1-\frac{1}{5^2}\right)+...+\left(1-\frac{1}{50^2}\right)\)
\(B=\left(1+1+1+1+...+1\right)-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-\frac{1}{5^2}-...-\frac{1}{50^2}\)
\(B=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}\right)\)
Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}\)
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\)
\(A< 1-\frac{1}{50}\)
\(A< \frac{49}{50}\)\(\left(1\right)\)
Lại có :
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{50.51}\)
\(A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{50}-\frac{1}{51}\)
\(A>\frac{1}{2}-\frac{1}{51}=\frac{49}{102}\)\(\left(2\right)\)
Từ (1) và (2) suy ra \(\frac{49}{102}< A< \frac{49}{50}\)
\(\Leftrightarrow\)\(49-\frac{49}{102}< 49-A< 49-\frac{49}{50}\)
\(\Leftrightarrow\)\(\frac{4949}{102}< B< \frac{2401}{50}\)
\(\Rightarrow\)\(B\notinℤ\)
Vậy B không là số nguyên
bạn ấy làm đúng rùi đó
S= 3/4+8/9+15/16+24/25+....+2499/2500. chứng tỏ rằng S không phải là số tự nhiên
Cho B = \(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{2499}{2500}.\) . Chứng tỏ B không phải số nguyên.
ko ngờ đấy mày lại ko được giải khi thi MYTS
Cho B=\(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+\frac{24}{25}+...+\frac{2499}{2500}\). Chứng tỏ B không phải là số nguyên.
\(B=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+...+\frac{50^2-1}{50^2}\)
\(B=1-\frac{1}{2^2}+1-\frac{1}{3^2}+...+1-\frac{1}{50^2}\)
\(B=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)=49-A< 49\)
Mặt khác ta có:
\(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A< 1-\frac{1}{50}< 1\)
\(\Rightarrow B=49-A>49-1=48\)
\(\Rightarrow48< B< 49\)
\(\Rightarrow\) B nằm giữa 2 số nguyên liên tiếp nên B không phải là số nguyên
\(B=1-\frac{1}{4}+1-\frac{1}{9}+1-\frac{1}{16}+...+\frac{1}{2500}\)
\(B=1-\frac{1}{2^2}+1-\frac{1}{3^2}+1-\frac{1}{4^2}+...+\frac{1}{50^2}=\left(1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{50^2}\right)\)(từ 2 đến 50 có 49 số nên có 49 số 1)
\(B=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{50^2}\right)<49\) (1)
Nhận xét: \(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};\frac{1}{4^2}<\frac{1}{3.4};...;\frac{1}{50^2}<\frac{1}{49.50}\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{50^2}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}<1\) => \(-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{50^2}\right)>-1\)
=> \(B=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{50^2}\right)>49-1=48\)(2)
Từ (1)(2) => 48 < B < 49 => B không phải là số nguyêm
B=22−122+32−132+...+502−1502B=22−122+32−132+...+502−1502
B=1−122+1−132+...+1−1502B=1−122+1−132+...+1−1502
B=49−(122+132+...+1502)=49−A<49B=49−(122+132+...+1502)=49−A<49
Mặt khác ta có:
A=122+132+...+1502<11.2+12.3+...+149.50A=122+132+...+1502<11.2+12.3+...+149.50
⇒A<1−12+12−13+...+149−150⇒A<1−12+12−13+...+149−150
⇒A<1−150<1⇒A<1−150<1
⇒B=49−A>49−1=48⇒B=49−A>49−1=48
⇒48<B<49⇒48<B<49
⇒⇒ B nằm giữa 2 số nguyên liên tiếp nên B không phải là số nguyên