Chứng minh rằng a5b-ab5 chia hết cho 30 với a,b là 2 số nguyên bất kì
Chứng minh rằng a5b - ab chia hết cho 30 với a,b là hai số nguyên bất kì.
ch0 a, b là 2 số nguyên bất kì . Chứng minh rằng m =\(a^5\cdot b-a\cdot b^5\)chia hết cho 30
\(m=a^5b-ab^5=a^5b-ab-ab^5+ab=b\left(a^5-a\right)-a\left(b^5-b\right)\)
Ta cần CM a5-a chia hết cho 30
Thật vậy,\(a^5-a=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)\)
Vì (a-1)a(a+1) là tích 3 số nguyên liên tiếp nên chia hết cho 2 và 3
Mà (2;3)=1
=>(a-1)a(a+1) chia hết cho 6
Lại có (6;5)=1
=>5(a-1)a(a+1) chia hết cho 30
Mặt khác (a-2)(a-1)a(a+1)(a+2) là h của 5 số nguyên liên tiếp nên chia hết cho 5 và 6
Mà (5;6)=1
=>(a-2)(a-1)a(a+1)(a+2) chia hết cho 30
=>a5-a chia hết cho 30
=>b(a5-a) chia hết cho 3
CM tương tự với a(b5-b) ta sẽ có đpcm
Cho a,b là hai số nguyên tố bất kì lớn hơn 2 (a > b). Chứng minh rằng: a - b chia hết cho 4 hoặc a + b chia hết cho 4
KQ là tập hợp rỗng (vô lí)
Tự CM nha
Mik ko rảnh
Sorry
chứng minh rằng:
a) với n là một số tự nhiên bất kì thì 75n+30 chia hết cho 15 nhưng không chia hết cho 25.
b) không tìm được 2 số tự nhiên x và y sao cho: a)2x+6y=2021 b)24x+16y=2022
Cho hai số nguyên a,b bất kì. chứng minh rằng:a5b-ab2 chia hết cho 30
Cho biểu thức:
P(n) = an+bn+c ( trong đó a; b; c là các số nguyên)
Chứng minh rằng: Với mọi số nguyên dương n bất kì mà P(n) luôn chia hết cho m ( với m là số cho trước) thì b2 chia hết cho n
chứng minh rằng trong 7 số nguyên tố bất kì, luôn tồn tại hai số có hiệu chia hết cho 12
chứng minh rằng trong 6 số tự nhiên bất kì,tồn tại hai số có hiệu chia hết cho 9
1)chứng minh rằng
a)ab(a+b)chia hết cho 2với a và b là 2 số tự nhiên bất kì
b)n2+n-1 không chia hết cho 2,với n là số tự nhiên
1/
Nếu $a,b$ cùng tính chất chẵn lẻ thì $a+b$ chẵn
$\Rightarrow ab(a+b)\vdots 2$
Nếu $a,b$ khác tính chất chẵn lẻ thì 1 trong 2 số $a,b$ là số chẵn
$\Rightarrow ab(a+b)\vdots 2$
Vậy tóm lại, $ab(a+b)\vdots 2$ với $a,b$ là số tự nhiên bất kỳ.
2/
$n^2+n-1=n(n+1)-1$
Vì $n,n+1$ là 2 số tự nhiên liên tiếp nên trong 2 số có 1 số chẵn, 1 số lẻ.
$\Rightarrow n(n+1)\vdots 2$
Mà $1\not\vdots 2$
$\Rightarrow n^2+n-1=n(n+1)-1\not\vdots 2$
chứng minh rằng với mọi số nguyên m;n bất kì thì A=mn(m^4-n^4) chia hết cho 5