Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Việt Hùng
Xem chi tiết
Nguyễn Đăng Diện
10 tháng 4 2016 lúc 21:25

\(=\frac{n\left(n+1\right)\left(n+2\right)}{3}\) nha

k cho mk nhé

Vũ Thị Như Quỳnh
10 tháng 4 2016 lúc 21:28

đặt tổng trên là A

ta có:

3A=1.2.3+2.3.3+...+n.(n+1).3

3A=1.2.3+2.3.(4-1)+...+n(n+1)[(n+2)-(n-1)]

3A=1.2.3+2.3.4-1.2.3+...+n(n+1)(n+2)-(n-1)n(n+1)

3A=n(n+1)(n+2)

A=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

Aya aya
Xem chi tiết
Phong Linh
8 tháng 9 2018 lúc 6:21

Ta có : S = 1.2 + 2.3 + 3.4 + ..... + 99.100

=> 3S = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .... + 99.100.101

=> 3S = 99.100.101

=> S = \(\frac{99.100.101}{3}=333300\)

Nguyễn Minh Quang
11 tháng 2 2021 lúc 8:28

ta xét

\(S\left(n\right)=1.2+2.3+..+n\left(n-1\right)\)

\(\Rightarrow3S\left(n\right)=1.2.3+2.3.3+..+3.n.\left(n-1\right)\)

\(\Leftrightarrow3S\left(n\right)=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+..+n\left(n-1\right)\left(n+1-\left(n-2\right)\right)\)

\(\Leftrightarrow3S\left(n\right)=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+..+n\left(n-1\right)\left(n+1\right)-n\left(n-1\right)\left(n-2\right)\)

\(\Leftrightarrow3S\left(n\right)=n\left(n-1\right)\left(n+1\right)\Rightarrow S\left(n\right)=\frac{n\left(n-1\right)\left(n+1\right)}{3}\)

Áp dụng ta có \(S\left(100\right)=\frac{99.100.101}{3}=333300\)

Khách vãng lai đã xóa
Nguyễn Bảo Vy
Xem chi tiết
Thanh Tùng DZ
11 tháng 5 2020 lúc 13:52

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)

\(A=1-\frac{1}{6}=\frac{5}{6}\)

\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{n}-\frac{1}{n+1}\)

\(B=1-\frac{1}{n+1}=\frac{n}{n+1}\)

Khách vãng lai đã xóa

ui cí này e chưa học

Khách vãng lai đã xóa
๖²⁴ʱTú❄⁀ᶦᵈᵒᶫ
11 tháng 5 2020 lúc 14:26

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}=1-\frac{1}{6}\)

\(=\frac{5}{6}\)

Khách vãng lai đã xóa
Link Pro
Xem chi tiết
Nguyễn Hưng Phát
15 tháng 1 2016 lúc 13:46

A=1.22+2.32+..............+(n-1).n2

A=1.2.2+2.3.3+.......+(n-1).n.n

A=1.2.(3-1)+2.3.(4-1)+.........+(n-1).n.(n+1-1)

A=1.2.3-1.2+2.3.4-2.3+..........+(n-1).n.(n+1)-(n-1).n

A=[1.2.3+2.3.4+.........+(n-1).n.(n+1)]-[1.2+2.3+............+(n-1).n)

Bạn tự làm tiếp nhá

Contrim Đẹptrai
Xem chi tiết
Vũ Minh Tuấn
15 tháng 9 2019 lúc 11:56

\(A=1.2+2.3+3.4+...+n.\left(n+1\right)\)

\(\Rightarrow3A=1.2.3+2.3.4+3.4.3+...+3n.\left(n+1\right)\)

\(3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+n.\left(n+1\right).\left[\left(n+2\right)-\left(n-1\right)\right]\)

\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+n.\left(n+1\right).\left(n+2\right)-\left(n-1\right)n.\left(n+1\right)\)

\(3A=n.\left(n+1\right).\left(n+2\right)\)

\(\Rightarrow A=\frac{n.\left(n+1\right).\left(n+2\right)}{3}\)

Vậy \(A=\frac{n.\left(n+1\right).\left(n+2\right)}{3}.\)

Chúc em học tốt!

Thanh Tramm
15 tháng 9 2019 lúc 11:48

3A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3

=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]

=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)]

=n.(n+1).(n+2)

=>S=[n.(n+1).(n+2)] /3

Diệu Huyền
15 tháng 9 2019 lúc 13:06

3A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3

=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]

=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)]

=n.(n+1).(n+2)

=>S=[n.(n+1).(n+2)] /3

Nguyễn Thị Thu Chi
Xem chi tiết
OoO_Nhok_Lạnh_Lùng_OoO
27 tháng 6 2017 lúc 9:08
Nguyễn Thị Thu ChiS=1.2+2.3+3.4+.............+n(n+1) 
S =1(1+1) + 2(2+1) + 3(3+1) +...+n(n+1) 
S =(1^2 + 2^2 + 3^2 +...+ n^2) + (1 + 2 + 3 + ...+ n) 
ta có các công thức: 
1^2 + 2^2 + 3^2 +...+ n^2 = n(n+1)(2n+1)/6 
1 + 2 + 3 + ...+ n = n(n+1)/2 
thay vào ta có: 
S = n(n+1)(2n+1)/6 + n(n+1)/2 
=n(n+1)/2[(2n+1)/3 + 1] 
=n(n+1)(n+2)/3

ko chắc chắn lắm

Related image

nguyễn minh thuận
Xem chi tiết
phantiendung
5 tháng 4 2018 lúc 21:40

3A=1.2.3+2.3.3+3.4.3+4.5.3+.....+9.10.3

3A=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+4.5.(6-3)+.....+9.10.(11-8)

3A=1.2.3-1.2.0+2.3.4-1.2.3+.....+9.10.11-9.10.8

3A=9.10.11

A=(9.10.11):3

A=330

CHẮC CHẮN 100% LÀ ĐÚNG

Nghĩa Nguyễn Trọng
Xem chi tiết
Nguyễn Thanh Nhàn
30 tháng 5 2016 lúc 20:07

\(\text{Ta có: A = 1.2+2.3+3.4+4.5+...+99.100 }\)

=>  3A = 3.(1.2+2.3+3.4+4.5+...+99.100)

=>  3A = 1.2.(3 - 0) +2.3.(4 - 1) + 3.4.(5-2) + ........ + 99.100.(101 - 98)

=>  3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .......... + 99.100.101

=>  3A = 99.100.101

\(\Rightarrow A=\frac{99.100.101}{3}=333300\)

k mình nếu đúng OK

DJ Walkzz
30 tháng 5 2016 lúc 20:06

Dãy số trên có số lượng các số là :

       (99,100 - 1,2) : 1,1 + 1 = 90 (số)

A = (1,2 + 99,100) x 90 : 2 = 4513,5

             Đáp số : A = 4513,5.

Nguyen Van Anh
Xem chi tiết
Đinh Tuấn Việt
18 tháng 7 2015 lúc 16:59

Áp dụng công thức ta có :

\(A=1.2+2.3+3.4+...+99.100=\frac{99.100.101}{3}=333300\)

Linh Tran
18 tháng 7 2015 lúc 17:00

A=1.2+2.3+3.4+4.5+.....+98.99+99.100 Rút gọn đi ta còn:

A=1+100

=>A=101

 

l҉o҉n҉g҉ d҉z҉
21 tháng 2 2017 lúc 20:01

Ta có : A = 1.2 + 2.3 + 3.4 + ....... + 99.100

=> 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ...... + 99.100.101

=> 3A = 99.100.101

=> A = 99.100.101/3

=> A = 333300