cho P=1+1/2+1/3+1/4+...+1/2^100-1. chung to rang P<50
chung to rang 1/2^2+1/3^2+1/4^2+....+1/100^2 <1
1/2^2 + 1/3^2 + 1/4^2 + ... + 1/100^2 < 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/99.100 = 99/100 < 1
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<\frac{99}{100}<1\)
Chung to rang:1+1/2 mu2+1/3 mu2+1/4 mu2+....+1/100 mu2 be hon 2
đặt A=1+1/2 mu2+1/3 mu2+1/4 mu2+....+1/100 mu2
đặt B=1/2.3+1/3.4+...+1/99.100
=1/1.2+1/2.3+1/3.4+...+1/99.100
=1-1/2+1/2-1/3+...+1/99-1/100
=1-1/100<1 (1)
Mà 1<2(2)
A =1/1+1/2.2+1/3.3+...+1/100.100<1-1/2+1/2-1/3+...+1/99-1/100 (3)
từ (1),(2),(3) =>A<2
ủng hộ nhé
chung to rang:
1 + 2^2 + 2^3 + 2^4 +.....+ 2^100 = 2^101 - 1
gọi 1+2^2+2^3+....+2^100 là A
TA co :
2A=2.(2^0+2^1+....+2^100)
2A= 2^1+2^2+2^3+....+2^101
2A-A=A suy ra A= 2^101-1
SUY RA 1+2^2+.......+2^100=2^101-1
chung minh rang : 1 / 2 ^ 2 + 1 / 3 ^ 2 + 1 / 4 ^ 2 + . . . + 1 / 100 ^ 2 < 99 / 100
Hình như sai đề thì phải chứ mk làm ko đc !!!
A < 1/(1.2) + 1/(2.3) + 1/(3.4) + ...+ 1/(99.100)
<=> A< 1- 1/2 + 1/2 - 1/3 + 1/4 - 1/5 + .. + 1/99 - 1/100
<=> A < 1 - 1/100 < 1 (đpcm)
So với thì đây
cho B=1+4+4^2...+4^100
a)tinh B
b)chung to rang 3B+1 la luy thua cua 4
a, 4B = 4+4^2+....+4^101
3B = 4B - B = (4+4^2+....+4^101)-(1+4+4^2+....+4^100) = 4^101-1
=> B = (4^101-1)/3
B, Có : 3B +1 = 4^101-1+1 = 4^101 là lũy thừa của 4
=> ĐPCM
k mk nha
a) B = 1 + 4 + 4^2 + ...........+4^100(1)
=>4B = 4 + 4^2 + ................+ 4^101(2)
Lấy (2) trừ đi (1) ta có :
=>3B = 4^101 - 1
=> B = (4^101 - 1) / 3
b) Ta có : 3B + 1 = 4^101
=> 3B + 1 là lũy thừa của 4
cho S = 1/ 2^2 + 1/ 3^2 + 1/ 4^2 + 1/5^2 +... + 1/ 2016 ^ 2 . chung to rang S< 1
Ta có:
1/1^2 + 1/3^2 + 1/4^2 + ...+ 1/2016^2
= 1/2.2 + 1/3.3 + 1/4.4 + ... + 1/2016.2016
S < 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/2015.2016
S < 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2015 - 1/2016
S < 1 - 1/2016
Mà 1 - 1/2016 < 1
=> S < 1
Vậy A < 1
Ủng hộ nha nhà mk nghèo lắm
chung minh rang 1/2!+1/3!+1/4!+..................+1/100!<1
Đặt \(A=\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{100!}\)
Ta thấy:
\(\dfrac{1}{2!}=\dfrac{1}{1.2};\dfrac{1}{3!}=\dfrac{1}{1.2.3}< \dfrac{1}{2.3};...;\dfrac{1}{100!}=\dfrac{1}{1.2...100}< \dfrac{1}{99.100}\)
Cộng vế với vế ta được:
\(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
\(\Rightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow A< 1-\dfrac{1}{100}< 1\)
Vậy \(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{100!}< 1\) (Đpcm)
\(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+\dfrac{1}{100!}\)
\(=\left(\dfrac{1}{1!}-\dfrac{1}{2!}\right)+\left(\dfrac{1}{2!}-\dfrac{1}{3!}\right)+\left(\dfrac{1}{3!}-\dfrac{1}{4!}\right)+...+\left(\dfrac{1}{99!}-\dfrac{1}{100!}\right)\)
\(=1-\dfrac{1}{100!}< 1\)
chung minh rang 1-1/2^2-1/3^3-1/4^2-....-1/100^2>1/100
please,who can help me?
chung minh rang 1/3^2+1/4^2+1/5^2+...+1/100^2<1/2
có: 1/3^2<1/2.3; 1/4^2<1/3.4:...: 1/100^2<1/99.100
Mà: 1/1.2+1/2.3+...+1/99.100=1-1/2+1/2-1/3+...+1/99-1/100
=1-1/100
=99/100
=> 1/3^2+1/4^2+...+1/100^2<99/100<1
=> đpcm
UNDERSTAND ???
đặt A= biểu thức trên
tao có
A<1/2.3+1/3.4+...+1/99.100
A<1/2-1/3+1/3-1/4+...+1/99-1/100
A<1/2-1/100<1/2
SUY RA A<1/2(DPCM)