Tìm n thuộc N sao cho: 4n + 10 chia hết cho n + 2
a) Cho n thuộc N. chứng minh rằng A=(n+10).(n+15) chia hết cho 2
b) Tìm số tự nhiên n sao cho 4n - 5 chia hết cho 2n - 1
mình biết câu a
a=[n+10].[n+15]chia hết cho 2
khi n là số chẵn thì n +10 sẽ chia hết cho 2
khi n là số lẻ thì 15+n sẽ chia hết cho 2
nên a chia hết cho 2
a)nếu n=2k(kEN)
thì (n+10)(n+15)=(2k+10)(2k+15)=2k(2k+15)+10(2k+15)=4k^2+30k+20k+150=4k^2+50k+150 chia hết cho 2
nếu n=2k+1(kEN)
thì (n+10)(n+15)=(2k+1+10)(2k+1+15)=(2k+11)(2k+16)=2k(2k+16)+11(2k+16)=4k^2+32k+22k+176=4k^2+54k+176 chia hết cho 2
Vậy với mọi nEN thì A=(n+10)(n+15) chia hết cho 2
b)(4n-5) chia hết cho 2n-1
4n-2-3 chia hết cho 2n-1
2(2n-1)-3 chia hết cho 2n-1
=>3 chia hết cho 2n-1 hay 2n-1 E Ư(3)={1;3}
=>2nE{2;4}
=>n E{1;2}
Vậy để 4n-5 chia hết cho 2n-1 thì nE{1;2}
b1: tìm số tự nhiên n sao cho
a) (n^10) +1 chia hết cho 10
b) (n^2) + 4n+29 chia hết cho 5
b2: tìm số nguyên n sao cho: (n^2)+2n-4 chia hết cho 11
Tìm n thuộc N sao cho : a) ( n - 7 ) chia hết ( n + 2 ) b) ( 4n+7 ) chia hết ( n - 3)
a) \(\left(n-7\right)⋮\left(n+2\right)\)\(\Rightarrow n+2-9⋮n+2\)mà \(n+2⋮n+2\)\(\Rightarrow9⋮n+2\Rightarrow n+2\inƯ\left(9\right)\)
\(\Rightarrow n+2=\left\{\pm1;\pm3;\pm9\right\}\)\(\Rightarrow n=\left\{-3;\pm1;-5;-11;7\right\}\)
b) \(4n+7⋮n-3\Rightarrow4n-12+19⋮n-3\)mà \(4n-12=4\left(n-3\right)\Rightarrow4n-12⋮n-3\Rightarrow19⋮n-3\)
\(\Rightarrow n-3\inƯ\left(19\right)\Rightarrow n-3=\left\{\pm1;\pm19\right\}\Rightarrow n=\left\{2;3;-16;22\right\}\)
tìm n thuộc Z sao cho
a,(n^2-3n+9)chia hết cho n-2
b,(4n-17) chia hết cho n-1
8^102-2^102 chia hết cho 10
9^n+1 chia hết cho 10 n thuộc N
2^4n+1 chia hết cho 5 n thuộc N
3^4n+1+2 chia hết cho 5 n thuộc N
bài này là chứng minh đó
Tìm STN n sao cho:
a) (4n - 7) chia hết cho (n - 1)
b) (5n - 8) chia hết cho (4 - n)
c) (10 - 2n) chia hết cho (n - 2)
d) (n^2 + 3n + 6) chia hết cho (n + 3)
a) \(4\left(n-1\right)-3⋮\left(n-1\right)\)
\(\Rightarrow\left(n-1\right)\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;2;4\right\}\)
b) \(-5\left(4-n\right)+12⋮\left(4-n\right)\)
\(\Rightarrow\left(4-n\right)\inƯ\left(12\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)
Do \(n\in N\Rightarrow n\in\left\{16;10;8;7;6;5;3;2;1;0\right\}\)
c) \(-2\left(n-2\right)+6⋮\left(n-2\right)\)
\(\Rightarrow\left(n-2\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;1;3;4;5;8\right\}\)
d) \(n\left(n+3\right)+6⋮\left(n+3\right)\)
\(\Rightarrow\left(n+3\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;3\right\}\)
tìm n thuộc N sao cho
4n+3 chia hết cho 3n+2
Bài 1:Tìm n thuộc z sao cho
a) n+1 chia hết cho n-1
b) 3n -2 chia hết cho n+2
c) n^2 +4n -8 chia hết cho n+3
d) n^2 +5 chia hết cho n-1
Tìm n thuộc N sao cho:
a) n+8 chia hết cho n+3
b) 3n+2 chia hết cho n-1
c) 4n-5 chia hết cho 2n-1