Chứng tỏ rằng hai số lẻ liên tiếp nguyên tố cùng nhau.
Chứng tỏ rằng hai số lẻ liên tiếp nguyên tố cùng nhau.
Chứng tỏ rằng hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
dễ, gọi 2 số lẻ liên tiếp là 2k+1 và 2k+3 (k thuộc N)
gọi d là UCLN(2k+1;2k+3) suy ra:2k+1chia hết cho d;2k+3 chia hết cho d suy ra : (2k+3)-(2k+1) chia hết cho d suy ra: 2 chia hết cho d suy ra d thuộc tập hợp Ư(2) suy ra d thuộc {1;2}
nhưng vì 2k+1;2k+3 là số lẻ nên không chia hết cho 2 suy ra d=1
VẬY:HAI SỐ LẺ LIÊN TIẾP NGUYÊN TỐ CÙNG NHAU
chứng tỏ rằng : hai số tự nhiên lẻ liên tiếp là hai số nguyên tố cùng nhau
chứng tỏ rằng hai số tự nhiên lẻ liên tiếp là 2 số nguyên tố cùng nhau
Gọi 2 số tự nhiên lẻ liên tiếp là 2k+1 và 2k+3 và ƯCLN(2k+1;2k+3)=d
\(\Rightarrow\)2k+1 chia hết cho d và 2k+3 chia hết cho d
\(\Rightarrow\)(2k+1) - (2k+3) chia hết cho d
\(\Rightarrow\)2 chia hết cho d \(\Rightarrow\)ƯCLN(2k+1;2k+3) thuộc 1 hoặc 2
Vì 2k+1 và 2k+3 là số lẻ nên d là số lẻ. \(\Rightarrow d=1\)
\(\Rightarrow\)ƯCLN(2k+1;2k+3)=1
Vậy 2 số tự nhiên lẻ liên tiếp là 2 số nguyên tố cùng nhau
chứng tỏ hai số lẻ liên tiếp là số nguyên tố cùng nhau
gọi 2 số lẻ liên tiếp là 2k+1 và 2k+3
đặt(2k+1,2k+3)=d
ta phải c/m d=1
thật vậy : 2k+1chia hết cho d
2k+3 chia hết cho d
suy ra(2k+3)-(2k+1)chia hết cho d
suy ra:2 chia hết cho d
suy ra: d=1hoặc 2
nhưng d khác 2 vì d là ước của số lẻ
suy ra:d=1
chứng tỏ hai số lẻ liên tiếp là số nguyên tố cùng nhau
ban chi can tra loi:biet roi thi chung minh lam gi cho met nguoi
Gọi 2 số lẻ liên tiếp là n+1 và n+3
Đặt ƯCLN(n+1,n+3) là d
=> n+1 chia hết cho d
n+3 chia hết cho d
=> (n+3) - (n+1) chia hết cho d
=> n+3 - n - 1 chia hết cho d
=> 2 chia hết cho d
=> d \(\in\){1;2}
Mà n+1 và n+3 là số lẻ nên d \(\ne\)2
=> d = 1
=> ƯCLN(n+1,n+3) = 1
=> n+1 và n+3 là 2 số nguyên tố cùng nhau
Vậy 2 số lẻ liên tiếp 2 số nguyên tố cùng nhau
Chứng minh bằng phương pháp phản chứng:
Giả sử 2 số lẻ liên tiếp không nguyên tố cùng nhau.
Nghĩa là chúng cùng chia hết cho 1 số.
Gọi 2 số lẻ là 2n+1 và 2n+3 cùng chia hết cho 1 số a.
Ta có: 3 chia hết cho 3 nên 2n+3 chia hết cho 3 thì 2n chia hết cho 3.
Nhận thấy 2n chia hết cho 3 mà 1 không chia hết cho 3 suy ra 2n+1 không chia hết cho 3.
Điều này trái với giả sử là 2n+1 chia hết cho 3.
Do đó điều giả sử lá sai .Hay : 2 số lẻ liên tiếp nguyên tố cùng nhau
Nguồn:áp dụng :
a chia hết cho m, b không chia hết cho m thì a+b không chia hết cho m
lần sai áp dụng công thức mà làm mất công đánh
Chứng tỏ rằng 2 số lẻ liên tiếp bất kì nguyên tố cùng nhau
Chứng tỏ rằng 2 số lẻ liên tiếp bất kì nguyên tố cùng nhau
gọi 2 số lẻ đó là 2k+1 và 2k+3
gọi ước chung lớn nhất của 2 số lẻ đó là p
=>2k+1 chia hết cho p; 2k+3 chia hết cho p
=>2k+3-2k-1=2 chia hết cho p
=>p=1;2
trường hợp p=2 loại vì 2k+1 và 2k+3 lẻ
1.Chứng tỏ rằng hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
2.Chứng minh rằng với mọi số tự nhiên , các số sau là các số nguyên tố cùng nhau.
a) n+1 và n+2 b)2n+2 và 2n+3
c)2n+1 và n+1 d)n+1 và 3n+4
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
Bài 2:
c.
Gọi $d=ƯCLN(2n+1, n+1)$
$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.
d.
Gọi $d=ƯCLN(n+1, 3n+4)$
$\Rightarrow n+1\vdots d; 3n+4\vdots d$
$\Rightarrow 3n+4-3(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$
$\Rightarrow$ 2 số này nguyên tố cùng nhau.
chứng tỏ rằng
a)2 số tự nhiên liên tiếp bất kì nguyên tố cùng nhau
b)2 số tự nhiên liên tiếp lẻ bất kì nguyên tố cùng nhau