Tìm hai số u và v trong trường hợp sau:
u - v = 5 ; uv = 24
Tìm hai số u và v trong mỗi trường hợp sau: u +v =-5, uv =-24
Hai số u và v với u +v =-5 và uv =-24 nên nó là nghiệm của phương trình x 2 +5x -24 =0
∆ = 5 2 – 4.1.(-24)= 25 +96=121 > 0
∆ = 121 =11
Vậy u = 3, v = -8 hoặc u = -8, v = 3
Tìm hai số u và v trong mỗi trường hợp sau:
u – v = 5, uv = 24
u – v = 5 ⇒ u + (-v) = 5
u.v = 24 ⇒ u.(-v) = -uv = -24.
Ta tìm u và –v. Từ đó, ta dễ dàng tính được u và v.
S= u + (-v) = 5; P = u. (-v) = -24 ⇒ S2 – 4P = 52 – 4.(-24) = 121 > 0
⇒ u và –v là hai nghiệm của phương trình: x2 – 5x – 24 = 0
Có Δ = (-5)2 – 4.1.(-24) = 121
⇒ Phương trình có hai nghiệm phân biệt
⇒ u = 8; -v = -3 hoặc u = -3; -v = 8
⇒ u = 8; v = 3 hoặc u = -3; v = -8.
Tìm hai số u và v trong mỗi trường hợp sau:
a) u + v = 42, uv = 441
b) u + v = -42, uv = -400
c) u – v = 5, uv = 24
a) S = 42; P = 441 ⇒ S 2 – 4 P = 42 2 – 4 . 441 = 0
⇒ u và v là hai nghiệm của phương trình: x 2 – 42 x + 441 = 0
Có: Δ ’ = ( - 21 ) 2 – 441 = 0
⇒ Phương trình có nghiệm kép x 1 = x 2 = - b ’ / a = 21 .
Vậy u = v = 21.
b) S = -42; P = -400 ⇒ S 2 – 4 P = ( - 42 ) 2 – 4 . ( - 400 ) = 3364 > 0
⇒ u và v là hai nghiệm của phương trình: x 2 + 42 x – 400 = 0
Có Δ ’ = 21 2 – 1 . ( - 400 ) = 841
⇒ Phương trình có hai nghiệm phân biệt:
Vậy u = 8; v = -50 hoặc u = -50; v = 8.
c) u – v = 5 ⇒ u + (-v) = 5
u.v = 24 ⇒ u.(-v) = -uv = -24.
Ta tìm u và –v. Từ đó, ta dễ dàng tính được u và v.
S= u + (-v) = 5; P = u. (-v) = -24 ⇒ S 2 – 4 P = 5 2 – 4 . ( - 24 ) = 121 > 0
⇒ u và –v là hai nghiệm của phương trình: x 2 – 5 x – 24 = 0
Có Δ = ( - 5 ) 2 – 4 . 1 . ( - 24 ) = 121
⇒ Phương trình có hai nghiệm phân biệt
⇒ u = 8; -v = -3 hoặc u = -3; -v = 8
⇒ u = 8; v = 3 hoặc u = -3; v = -8.
Tìm hai số u và v trong mỗi trường hợp sau:
u + v = 12, uv = 28 và u > v
S = 12, P = 28 ⇒ S2 – 4P = 32 > 0
⇒ u, v là hai nghiệm của phương trình: x2 – 12x + 28 = 0.
Có a = 1; b = -12; c = 28 ⇒ Δ’ = (-6)2 – 28 = 8 > 0
Phương trình có hai nghiệm x1 = 6 + 2√2; x2 = 6 - 2√2
Vì u > v nên u = 6 + 2√2 và v = 6 - 2√2
tìm hai số u và v trong mỗi trường hợp sau : a) u+v=32,v .u=231
H = 32; U = 231 => H^2 - 4U = 32^2 - 4.231 = 100 > 0
tồn tại u và v là 2 nghiệm pt: x^2 - 32x + 231 = 0
ta có: \(\Delta=\left(-32x\right)^2-4.231=100>0\)
pt có 2 nghiệm:
\(x_1=\frac{32+100}{2.1}=21;x_2=\frac{32-\sqrt{100}}{2.1}=11\)
\(\Rightarrow\hept{\begin{cases}u=21;v=11\\u=11;v=21\end{cases}}\)
Tìm hai số u và v trong mỗi trường hợp sau:
a) u+v=42,uv=441;
b)u+v=-42,uv=-400;
c)u-v=5,uv=24
Tìm hai số u và v trong mỗi trường hợp sau:
u + v = 42, uv = 441
S = 42; P = 441 ⇒ S2 – 4P = 422 – 4.441 = 0
⇒ u và v là hai nghiệm của phương trình: x2 – 42x + 441 = 0
Có: Δ’ = (-21)2 – 441 = 0
⇒ Phương trình có nghiệm kép x1 = x2 = -b’/a = 21.
Vậy u = v = 21.
Tìm hai số u và v trong mỗi trường hợp sau:
u + v = 3, uv = 6
S = 3; P = 6 ⇒ S2 – 4P = -15 < 0
Vậy không tồn tại u, v thỏa mãn yêu cầu.
Tìm hai số u và v trong trường hợp : u\(^2\)+v\(^2\)=13; u.v=6